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LES, DNS and RANS for the Analysis of High-Speed
Turbulent Reacting Flows

V. Adumitroaie, P.J. Colucci, D.B. Taulbee and P. Givi
Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo
Buffalo, New York 14260-4400

Abstract

The purpose of this research is to continue our efforts in advancing the state of knowledge in
large eddy simulation (LES), direct numerical simulation (DNS) and Reynolds averaged Navier
Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows.
In the second phase of this work, covering the period: August 1,1994 - August 1, 1995, we have
focused our efforts on two programs: (1) Developments of explicit algebraic moment closures for
statistical descriptions of compressible reacting flows, (2) Development of Monte Carlo numerical
methods for LES of chemically reacting flows. This report provides a complete description of
our efforts during this past year as supported by the NASA Langley Research Center under

Grant NAG-1-1122.

Technical Monitor:

Dr. J. Philip Drummond (Hypersonic Propulsion Branch, NASA LaRC, Mail Stop 197, Tel: 804-
864-2298) is the Technical Monitor of this Grant.



1 Introduction

We have just completed our Year 2 of the Phase II activities on this NASA LaRC sponsored project.
The total time allotted for this phase is three years; this phase was followed at the conclusion of
Phase I activities (also for three years). Thus, in total we have completed five years of NASA LaRC
supported research and one more year is remaining. Within the past five years, we have considered
many issues of interest to the NASA LaRC in improving the state of affairs in DNS, LES and RANS
of high speed turbulent reacting flows. Our previous four annual reports provide detail information

on our past achievements. This report provides a complete description of our activities in Year 5.

Our efforts within the past year have been primarily concentrated on two main tasks: (1) Develop-
ment of algebraic moment closures for statistical description of (highly) compressible flows, and (2)
Development of an efficient Monte Carlo computational procedure for LES of chemically reactive
flows. The efforts in (1) are in continuation of our previous work! (discussed in our Year 4 annual
report), and the work pertaining to (2) is in continuation of our previous work? 3 (discussed in our
Year 3 annual report). In addition, we have devoted a portion of our efforts to make use of the
models in (1) for the purpose of LES. At this point, our achievements are not yet a level suitable
for documentation. Qur achievements on each of the two constituents of the work in Year 5 are

described in the next two sections.

2 Algebraic Turbulence Closures for High Speed Turbulent Flows

2.1 Introduction

For the incompressible regime the literature on computational prediction of nonreactive turbulent
transport is abundant with schemes based on single-point statistical closures for moments up to
the “second-order”.4® Referred to as Reynolds stress models (RSM), these schemes are based on
transport equations for the second order velocity correlations and lead to determination of “non-
isotropic eddy-diffusivities.” This methodology is more advantageous than the more conventional
models based on the Boussinesq approximations with isotropic eddy diffusivities (such as the k — ¢
type closures*?). However, the need for solving additional transport equations for the higher order
moments could potentially make RSM less attractive, especially for practical applications. For
example, it has been recently demonstrated!® that the computational requirement associated with
RSM for predictions of three-dimensional engineering flows is more than 80% higher than that
required to implement the k — ¢ model. The increase is naturally higher for second-order mod-
eling of chemically reacting flows owing to the additional length and time scales which have to
be considered.’’"17 A remedy to overcome the high computational cost associated with RSM is to
utilize “algebraic” closures.’®2% Such closures are either derived directly from the RSM transport

equations, or other types of representations?®72% that lead to anisotropic eddy diffusivities. One



of the original contributions in the development of algebraic Reynolds stress models (ARSM) is
due to Rodi.? In this work, all the stresses are determined from a set of “implicit” equations
which must be solved in an iterative manner. Pope!® offers an improvement of the procedure by
providing an “explicit” solution for the Reynolds stresses. This solution is generated via the use
of the Cayley-Hamilton theorem, but is only applicable for predictions of two-dimensional (mean)
flows. The extension of Pope’s formulation has been recently done by Taulbee!® and Gatski and
Speziale.? In these efforts, the Cayley-Hamilton theorem and the “symbolic” matrix manipulation
techniques are used to generate explicit algebraic Reynolds stress models which are valid in both

two- and three-dimensional flows.

In recent years the fundamental research on compressible turbulent flows has experienced a period of
impetus owing to an increasing involvement of the propulsion community in the design high-speed-
high-altitude ramjet engines. Although new experimental and numerical information is continuously
accumulating over the years (for reviews see Lele,>® Gutmark et al®!) the theory of compressible
turbulence has not reached maturity yet. Several important aspects have been recognized about the
nature of the turbulent state of a compressible medium and progress has been made in advancing
the modeling of simple physical flow phenomena, but the inclusion of compressibility effects and of
variable inertia effects in the turbulence models is an issue still under investigation, especially for the

2 or in Fourier space,33

d36

second-order moment closures. Using dimensional analysis in physical space®
asymptotic analysis,>® rapid-distortion theory, singular perturbation metho inside acoustic
theory previous contributions have exploited the decomposition concept of the compressible field
to generate models for terms specific to high-speed flows, i.e. pressure dilatation and dilatational
dissipation which have been perceived to contribute to the reduced growth rate of the compressible
mixing layer. These models have been applied in many instances as compressibility corrections in
conjuncture with the standard k — ¢ model®” or with a generalized form of the k — € model®? or with
the actualized incompressible Reynolds stress turbulence model.3®:3° By contrast true compressible

35,40

second-order modeling attempts are very few.

The specific objective is to provide explicit algebraic relations for the Reynolds stress and for
the “turbulent flux” of scalar variables in the high-speed regime. Both non-reacting and reacting
flows with heat release are considered. In the latter, a second-order irreversible chemical reaction in
considered in turbulent flows with initially segregated reactants. The closures explicitly account for
the influence of the the turbulent Mach number and Damkéhlernumber (only in the scalar model)
and density gradient, pressure gradient and mean dilatation effects are included in the closures.
Similar to previous contributions,8-41,18-25 the starting equations are the differential equations for
the second order moments. Linear closures for the pressure-strain and the pressure-scalar gradient
correlations are proposed and simple models for the averaged Favré scalar fluctuations are derived

and embedded in the final explicit algebraic models.



2.2 Governing Equations

In the statistical approach to the turbulence problem the instantaneous equations are used to
obtain the governing equations for the mean variables. Denote by overline ensemble average and

by brackets density weighted (Favré) ensemble averaging:

pX
P

(X)=
Accordingly, we have the following decomposition rules:

X=X+X, X'=0
X=(X)+X", (X")=0, X =X-(X)
The governing equations are written in normalized form (with respect to reference values: &, -
vorticity thickness for length, poo, Ucc, Too, foo) for a compressible, reacting with heat release
(A+ 7B — (r+ 1)P + heat) mean turbulent flow.

Continuity:
9p , 9plw;)

at Jz; = 0. (1)

Conservation of momentum:

Op(us) | Oplu){w) _ _Plwiwg)  0p  07,(w)

at BIEJ' BIJ‘ oz; al‘j ’
,7=1,2,3 (2)

where the stress tensor is 0;(u) = 2u[Si;(u) — 3 Spp(u)éi;]/ Re = 2u57;(u)/ Re. The present notation
for strain rate 5;(u) = (2—;‘}1 +%{- )/2 and for all the other linear differential operator is more suitable
for the compressible problem where the two type of averages (which have diflerent properties
with respect to the linear differential operators) are naturally encountered. Hereinafter the star
exponent will indicate the traceless tensor (deviatoric part) correspondent to the unstarred tensor.
The mean viscosity (u) follows a Maxwell-Rayleigh variation law with the mean temperature, i.e.
(1) tires = ((T)/Tres)", n = 0.76. The fluctuations of the viscosity are neglected so that its
correlations with other variables in the flow are zero. Within the present notation the averaged
stress 7j;(u) is equal to g;i({u)) + Uj,'(?).

Let e, = (T — vCeYp + u;u;/2)/(¥(y — 1)M?). Then the total energy equation is:

op(es) , Fpledw) _ _OLTYP) _OPGel) O o0 oo 3)

ot a:l'j Bl‘j sz aIJ




where the averaged heat flux is

U 0 Ce
; Yr)= - — - =
g;(T,Yp) (v — 1)RePrM? 0z, (T Le YP)

%(T,Yp) = ¢;((T), (Yp)) + ¢;(T", Y7),

n_n

— 1 _
pu; = P(uy) + mp(ujT ),

%o ,i(u) = (w)aji((w) + (w)os(u) + o oji({u)) + Toji ()

and

n " 1 " » Ce n ” —_— ” ” - <u u’ u‘ )
(u;Yp) + p(uju; J{w) + p————.

Pluje,) = W?(“J’T )= G’

Conservation of species:

Op(Ys) . Op(Ya)u; op(uY, d Y —
pYa) | 9P u) __9p(wYe) & p V)
ot Ox; Oz; dz; \ ScRe O0zx;
a=A,B,P.
where w, represents the rate of chemical reaction (wg = %QB = —'il wp):

1
Wo = —Daexp [-—Ze (% - T—f)] ptYaYpg,

and its mean approximated as:

—_ 1 1
wo ~ —Daexp |—-Ze | — — = 72(Y4YR),
[ <<T> Tfﬂ alk)

And in the assumption of a perfect gas mixture, the equation of state:

1
p-7MQp<T>

(4)

(6)

(7)

Here p, u;, p, €1, T, Yo, Re, Pr, M, Ce, Le, Sc, Ze and Da denote the fluid density, the i-th
component of the velocity vector, the pressure, total energy, temperature, mass fraction of species o,

the Reynolds number, the Prandtl number, the Mach number, the heat release parameter, the Lewis

number, the Schmidt number, the Zel’dovich number and the Damkéhlernumber, respectively.

The closure problem consists in providing models or closed transport equations for the second order

moments that appear in the equations for the mean variables. In general, the models are based on

length scales and time scales constructed from second order quantities obtained from the following



transport equations. The equation for the kinetic energy of the turbulence (k) = (u;u;)/2 reads:

Optk) | 92Nw) _ 9 5k + 7] - W)

ot Oz; Oz,
., no» 3(’(11‘) /?i: bty aﬁ 'TBU_;,((U)) N " 3’u,:
—p(ui u]) BJIJ +p 6‘.7:,- ’U] azj uj ax] - UJI(u );9—:;7 (8)

» 3 - —_—— » 8 " — — - ” ” " . .
The turbulent dissipation p € = 0;i(u )5% = B(e, + 1) = 2u; (v )Qi;(v") + §uS2,(u") is split
into solenoidal and dilatational parts,?32:31 with Q,;(u) = %(g%; - %) as the rotation rate. The

solenoidal part is computed from the equation:

€, now 8<U1> _?Z
m(“iuﬂ 9z, = Copys (9)

ey 0%
(k)’

p<u;(5> - Ean] - C(lﬁ

dp € + 6?)’?3(’&]‘) ___Y
at 31‘]‘ - a.l‘j

with C, = 1.44 and C,, = 1.92. For the dilatational part there are available several models.32-34,36

The model of Taulbee and VanQOsdol®® for the dilatational terms combined requires additional
transport equations and our intention this work is to keep the number of equations at minimum.

Other options are the model proposed by Sarkar et al. 34
ey =€ M? (10)
and the model of Ristorcelli*®
€= {—16—2 13 + 61313) + (Z)srz [30% + 57 -
3 5

3, 1?2 ) M
[513 + (ﬁ) [1302 + 15w2] 7202]1] } -72—2—63 (11)

The parameters are I§ = 0.3, I3 = 13.768, I§ = 2.623, I] = 1.392, I3 =3, a = 1 + 4. Also, M,
denotes the turbulent Mach number, that is M? = 2(k)/c? and R, the turbulent Reynolds number
Ry = 5(k)?/(9¢p) Re. The local speed of sound is given by ¢t =T/M2.

The corresponding second-order quantities necessary for the temperature calculations are the tem-

perature variance (T 2) and the thermal turbulent dissipation, p & = ?}%—e%%. For the former,

starting from the temperature equation with ¢, constant, we have:

OR(T'Y) | Op(T (w) BT 9 g 9T\ e O(T)
ot 6n, - = e, tow \PrRear, ) 7T

2yp 0T 0T 0 ( 21 F0<T)> 2yu AT &(T)

+ 2yCe wpT" -

PrRe dz; dz; * bz; \ PrRe 0z, " PrRe dz; 0z,

. Ou’ v O o OU T Ou;
2(y-1)p ((T) <T -52;—;> +(T 2>_6<_;1j_> + <T 25;%>> +2v(y - M?T a;j(u)EZ—'j—_. (12)



The transport equation for the thermal turbulent dissipation is given by:

Opes  Opes(u;) 0 (_ - p 0\ &, e O(T)
o oz, - e, P Sereas, Cupl T 1%, ~
_E e ow O(ui) _ % & €
C p<k><u|u ) axJ Cya <T"2) _C!Mp (k) (13)

The constants take the values C,, = 2.0, Cy, =2.0,Cy, = C2 — 1 =0.92,Cy, = 0.5.

Treatment of the scalar variable requires the solution of additional transport equations for the

) . Ny ," a}’
reactants’ covariance (Y, Yy ) and dissipations p €xp = 3"52?_»'837’_& For the covariances we have:

Op(YaYy) | Op(YaYg)u) _ _Op(wYady) | ( u aY;Y,;‘)

ot Or; - Ozx; + dz; \ ScRe 0z;
o ) w0 B(Ya)  2u 0¥, Y
—plu;Ya) dz; — P{u;¥s) dz;  ScRe 0z, 0z;
+waYy + WY, . (14)

Source terms in the expanded form read (no summation on greek indexes in all subsequent equa-

tions)
s T 1 1 - L P , A
waYp +wpY, = —Daexp [-Ze (m - —]Tf):l PL(Y, Ya) + (Yp Y ))(VB) + ((Y, Yp) +
(Y Vp))(Ya) + (YaYaYg) + (Y5 Y4YB)].  (15)
Similarly, the scalar dissipations are obtain from (hereinafter ¢, = €44 ):

B”ﬁ?aﬁ+3ﬁ?aa(w>_ 9 <(u€ﬁ> ALY >

ot ox; oz, ScRe 3z,
a1 BB e OYa)) o Tap, e e D)
Cylp(k).z ((’U‘J}a> BIJ +(u_]} ) axj Cyz <L)(ulu1> 81’]
-2
€a _fs 601[3
- 1

In this equation, the chemical source term is of the form:

1 1
Saﬂ = —Daexp {—ZG ((_IT) - T—f)] ﬁ2 [(ZAQ + E:Aﬁ)()’B) + (zBﬁ + EO'B)<},A>] . (17)
To close the transport equations for the second order quantities all the third-order transport terms
are described by the gradient diffusion hypothesis. Denoting by a'b" any of the second-order



correlations, we have:

., n onm _ (k) " on 6(0" b" >
u;a b )=-Cip—(u;u; ,
P ) p<€>< i) oz,

where C, is taken to be equal to 0.22 for all non-gradient correlations ( @'d” = k or a6 = Y, 2),

(18)

whereas for the turbulent dissipations ( a'b =e¢orab =¢€), C, =0.18. Also, the molecular

transport terms are neglected under the assumption of high Reynolds-Peclet numbers flow.

2.3 Models Development
2.3.1 ARSM

An improved explicit ARSM has been derived by Taulbee!® from the modeled transport equation
for the Reynolds stresses. This model is based on the general linear pressure-strain closure given by
Launder et al.*3 The improvement is due to an extended range of validity; the model is valid in both
small and large mean strain fields and time scales of turbulence. A similar line of reasoning is made
to obtain an algebraic closure for the unclosed correlations in compressible regime. The transport
equations governing these correlations are transformed into algebraic expressions by making two
assumptions: (1) Existence of a “near-asymptotic” state, and (2) the difference in the transport
terms is negligible, in other words we look for the fixed point solution in the structural equilibrium

limit. The starting equations for the Reynolds stress equation are described by:

Op(uiu’)  Op{u;w;)(uk) O [, »on o ; - - . - ;
((% ) + a;k = ~ ok [P(“;“j“k) + Puibik + plug bk — w0k (u) — uioki(u )]
o e Owg) e s D) | (Bu 0w\ =8 —p
—p{u; uy) EPR — P{usy,) £ +p 0_11 + oz, ‘“.‘51.—3, —“ja—m

—d0ki({w) | =dom((w) _ | . 0w .0
T + u, 9z ojk(u )3$k+ok'(u)0xk (19)

Hereafter, a designates the anisotropic stress tensor, a;; = [(u,'u])/(k) — 26,;/3], the Kronecker
symbol is § = [§,;] = 1 for i = j = 1,3 and 0 otherwise, 7 = (k)/€, is the local turbulence time
scale, 0 = (S4((u))S5((u)))!/? and w = (9;((u))N;:({w)))"/? are tensor invariants.

The Reynolds stress equation is rewritten in terms of a/(70):

_Day/(ro) _ 1 [aT,»jk ~ <ul’u;>8Tk} ~

2 (k) | Ozx (k) Oz
ay [Tk _ ?_&]__1, R N
<k> [a‘rk T dxy (k) [Pi] + Hii + Mij + vt] p €a]']
-5 _ P Do M+V+Pd-p%
p— [Cc: 2+ (2 C")p‘zs -5 2 = (20)



where

* 2 _ non B(U) " o» 6(“{) 2, w0 a(ul)
Fj; = Pj - §P5ij =-p [("i uk)%}i‘ + (upu;) 9zr 5(“1:“1) B2y 5:‘:’] (21)
is the production of Reynolds stress,
H*.—H.'_z—fag.‘_/ @L_*_% _2;6_”;.. (22
w 3p =P (91‘]' (9.”12,' 3P 6Ik H )
is the pressure-strain correlation,
. _ 2. —dok({u))  —=00x({u)) 2-vOou({u))
V,'j = V,J - 31)6,] = UJ- axk + U; axk - 3U1 a.”l:k 6,1 (23)
is the mass flux/viscous diffusion term,
U SO Pt e 1 Y
My = My — g Mébij = - [".‘gx—ﬁ“jg;‘guka—u ij (24)

is the mass flux/pressure gradient term (also called enthalpic production by exchange with enthalpic

energyi?)

pe;=p (?«'j - 32;'?50') = Ujk(U")gZ—L + Ukz'(u")% - galk(u")g—zi% (25)
the anisotropy of the dissipation. The dyads involving the mass flux vector can be added to a single
tensor. In free shear flows the viscous diffusion part is negligible owing to the high Reynolds numbers
characteristic to these flows. Nevertheless, the present analysis can accommodate the discarded
term when necessary, such as near-wall flows. Hence, in subsequent equations the tensor M;; can be
used to include the viscous effects. Using a rationale similar to the incompressible situation,*>% the
pressure strain-correlation model can be written as (in this attempt the supplementary compressible
terms that appear in the Poisson equation have been neglected as being of second order, a rough

approximation, but valid in the low Mach number regime):
IL; —p frj = A; + 2p(Zpiq; + ijqi)(qu(<u>) + qu((”)) (26)

Our goal being to obtain an explicit algebraic Reynolds stress model, the integrals Z,;q; as well as
the tensor .4,; will have to be expressed as linear functions of the anisotropy of the Reynolds stress

tensor so that the final equation is solvable by exact analytic methods. Therefore

Ai; = —C1p Taij + App

Tpio;
&‘3’ = a164:6p; + 2(bpgbi; + bg6pi) + a16pjaq +
az(bpgai; + bpitg; + bijapg + 659api) + a4dgiap; (27)



This above form for Z,i,; satisfies already symmetry constraints. To determine the coefficients two
more constraints are applied: the normalization condition which translates into Zppg; = (ugu;)
and a matching condition such that from the trace of II;; is obtained an existing model for the
pressure dilatation (replacing the customary incompressible constraint which is recovered from the
above condition in the limit of zero Mach number). Some of the existing proposals to model this
term necessitate transport equations such as density variance3 or pressure variance.?® Two recent

pressure dilatation models*36 do not require separate equations, the model of Sarkar:*4
1 _
5Mpp = —P/d = X1 MES (- — 2 22)B(k) Spp + 7 — TP & (28)
t Iy X
where x1 = 0.15, x2 = 0.2, x3 = 0.2 and the model of Ristorcelli®®

_ 1_ . 2 .
pd = ~xXMP[=5Pk)Spp + P =P T+ T - SMiv(r = D(Pr+ P+ Tr)]
D(30? - 5w?)

—plkY M2y 2
plk)M{x Dt (29)
where
X = 2IPd X, — ;d
1+ 2L,aM? + 3aMiy(y = 1) 1+ 2L, M + 2LaMiy(v - 1)
2 s r 2 2 r 1 2 3 2rr
Ipd=§1+1pd[20 —'5‘&7], Pd:_ﬁ § aIl (30)

Using the latter model, the matching constraint on the Ip,; produces

xM"’ 7
Ipiql/<k> = ‘_Qt—(g‘qu + apq)-

The same condition enforces also that

., 2 v = D(30% — 5w?
App = xME[pE+ §Mt2‘7(’7‘ —1)(Pr+59)]- P(k)MfX'—L—E——)

(transport terms have been neglected based on the local homogeneity assumption). In this manner

a linear pressure-strain model is obtained. It is known that with linear forms it is impossible

conditions requiring that the eigenvalues of the Reynolds stress tensor be

to satisfy realizability
Schumann?® and detailed

positive. To overcome this deficiency we employ a method suggested by
by Shih and Shabbir.¥® If F = 1+ 27111/8+ 911/4 is a parameter involving the second invariant
II = —%a,-_,—aj, and third invariant 111 = —%a,'jajkak,' of the Reynolds stress anisotropy tensor,
then the following asymptotic behavior for the pressure strain-model ensures that realizability is

satisfied:

Aee—gﬁE:CF“ as F—0




d(up)
0z,

Tpege = 0 as F—0 (31)

where the index e indicates that the relations are written in the principal axes of (u; u;) To enforce
this kind of decay additional parameters are introduced in the pressure strain-model which reads

in final form:

. - N | T \
N -pe€; = —C1p €a; A F°7 + p(k) [[’5 + EBXME] Sij((“))'*’

1= Cot xMF [l S50 + S (s 5550

(1-C4- XMtQ][ainm'((“)) - Qip((“))am] + %XM?SW((“))GU] B,.Fﬁ' (32)

with C3 = (5-9C2)/11and Cy = (1+47C2)/11. The value for the constant Cy will be the same as in
the incompressible model to preserve consistency in the zero Mach number limit, that is C; = 0.45.

=0.1,5, = 0.5, A, = min(F~%", 0.172r)and By = min(F~Pr, 0.1-#"). The

The parameters are oy
33

mass flux is usually modeled by gradient-transport hypothesis38 or solving its transport equations.

A compromise between economy and accuracy is obtained using a model proposed by Ristorcelli:*?

= d(ui) 20(uy d(ur) |, » o\ 9P
+ vyT) 9z, (uju”)(')xp (33)

7 u; = Ty |Vobi; + 1Ty
' * H Oz; oz;

where 7, = M7/[1 + ME‘E(P/(ﬁ ¢) — 1)]. Here v, 11 and vy are the coefficients obtained {rom

2%,
the inversion of the matrix Gi; = &; + Tu%%il: vo = —(1+ Ig + Iig)v2, 1 = (1 + Ig)va,
v, =(1+Igt+llc +111g)7", the Roman numbers representing the invariants of G. For simplicity

we will use only the lowest order contribution from this model to obtain:

12 ) 12 )
M= —5-3%!/0(/6)(71.’;‘ + Rji— gnppéij = ‘%gTuVOUC)Rij (34)
where
o B
YT Bay dz;

is the mean density gradient-mean pressure gradient dyad. If the entire model is to be used in the

following equations R* should be replaced with M* and set by = —1/(p(k)).

The final equation is obtained introducing the above expressions for the pressure-strain correlation
model, production and mass flux terms into the equation for a;;. To get the fixed point solution we
ative as well as the difference in the transport terms. This results

set to zero the Lagrangian deriv
in matrix form (the braces signify the trace of the

in the following linear tensorial equation written

matrix inside the braces):

a= —gT [bIS* + b, R* + b3 (aS* + S*a — %{aS*}é) ~ by(af2 - Qa)] (35)
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with by = 4 — B, FOr (4 ZxM2), by = 27,00, by = 1= B, FS(1=Ca+ XMP), by = 1= B, F& (1
Cq— xM?), and

3 P T Do
= A'rFar = €& —Lal)z= ~ T
g C1€S+C2 24 (2 Cl)pz,+aDt+
— -1
2T M+pd-—pc
- XM B, F7)Sp((u)) + 2——%‘%——6 (36)

The task of solving the equation (35) is formidable. From the above equation we see that the
anisotropy of the Reynolds stress tensor is dependent on three primary second order tensors , two
symmetric and one skew-symmetric, a;; = a;;(S* 2, R*). The solution can be expressed as a finite

3-D tensor polynomial,
a=) C'T (37)
)

that is a linear combination of all the linear independent tensor products formed from the three
primary tensors. The coefficients of this polynomial are function of the set of independent invariants
which form the integrity basis for this problem. In this case the dimension of the minimal tensor
base is A = 41 (cf. Spencer?®) and although not all of the tensor products will appear in the final
result, there is little hope that the model will be of practical use at this time. A way to circumvent
this difficulty is to make a simplifying approximation regarding the b3 term. For most practical
free-shear flow applications F > 0.1, therefore in the low turbulent Mach number domain b3 ~ Cj.
It has been argued!® 2% that for the range of values used for the constant C, the inequality Cag Cy
holds and therefore the term multiplied by C3 will have small effect on the solution. Thus using

the superposition principle a = aS + a® where a° stands for the solution dependent on S*,
aS = _gr [bls* — by(aSy - Qas)] (38)
and af denoting the solution dependent on R*,
al = —gr [bQR* _ by(af2 - naR)] . (39)
Applying the results of Taulbee!? we have
as = —20,7S" — 40,7%(S*Q — QS*) — 8azT3(QIS* + SQ? - %{3*92}5)
—16a474(NS*Q? — Q?S*N) — 32a57° (S Q*}(Q? - %{92}5) (40)

where C,, = big(1 - %h%wz)hl, a; = %b1b4g2h2, az = %blbgg:’hl, a; = —%blbig"hl, as =
—%blbjgshl, ho = bagt, h1 = ho[(1 — 2h3w?)]™! and hy = [2- hiw?)~1. Similarly,

2
aR = —2C,7R* — 40,72 (R*2 — QR*) - 8037 (2*R* + R*Q? - 5{11*92}5)
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~16047(QR*Q? — Q*R*N) - 32057 {R*Q*}(Q - %{92}6) (41)

and the coefficients have the same form as those from the a’ solution with the parameter b, replaced
with b,.

In two dimensions the problem is less complicated since the number of tensor products necessary
to express the solution is vastly reduced. In this case S,Q, R are two dimensional tensors as
the mean quantities are 2-D. First it is necessary to recast the tensorial equation in terms of the
proper traceless 2-D tensors, that is S3;( ((w) = Si;((w) — 3Spp((u ))6,(12), R:(5,P) = Ri;(P,P) —
%Rpp(ﬁ, p)6 2), Here, the two dimensional Kronecker symbol is 62 = [6,(?)] =1lfori=j=1,2and
0 otherwise. The pressure strain model becomes:

. s _ N y
I, -7 €; = —Cip €a; A, 7 + (k) [[‘5' ﬁxMz]i.J(( N+

(1~ Cs+ xM7] [azp_p3(<u)) + 85,((u))ay; — i;q (U))apqéij- -

[1 - Cs — xMZ[aipQ,;({u) — Qi ({u))ap; ]+
2 4 6. 6,
§XMt25pp((u>)a«‘j - [— + EXM ] Spp({u)) [—31 - —2—3 W -
(2) (2)
21 -Cs + xM?] [aip (%J- - é—;—J ) % <6pq - 6—;‘7 ) 6,']] Spp((u))} B, FPr, (42)

It is important to stress the fact the both expressions (2-D and 3-D) of the pressure-strain correlation

model give the same result when applied to a two dimensional mean flow. The recasting is necessary

to take advantage of the simplifying properties of this particular case. Also,

. 12 L 12 8; 6,
Mi; = -%gTuVO<k)Eij T 55"11’/0(}9)]21);) [?J - _21 ] (43)

Using the previous information the final equation becomes:

a=—gr [bl_s_* + boR* + by (a_s_* +Sa- %{a_sg*}é) _ by (aQ — Qa)

& &9 & §@\ 1 & &3
by [=-= |- A = -z 6 44
5(32)6(8(32 31%\37 2 (“44)
with by = 4 — B, FAr(3 4+ 55xM?), b2 = 2 37ur0, bs = 1= B, FA(1-Ca+xM2), by = 1- B, F* (1~

Ca—xM}),bs = b1Spp+baRypp, bs = b35,,p and ¢ having the same expression as in the 3- D algebraic

equation. The polynomial solution a = S\ C*T? is based on only five independent tensors

§(2)
_OT pog, TP=s-0fs7), TP=R, T'=R'Q-QR" (4

T? = ,
2

Wl o>



and five non-zero independent invariants:
o*={s?), ='={2"), R}, {R'S"}, {SR'Q}. (46)

The assertion that there are no other independent tensor products or invariants can be verified

using the following 2 x 2 matrix identity:

2abc = be{a} + a{bc} + ac{b} — b{ac} + ab{c} + c{ab} -
c{a}{b} - a{b}{c} + ({ac}{b} - {acb})é"”. (47)

To obtain the explicit solution to the algebraic equation in the anisotropic Reynolds stress a pro-
cedure similar to one devised by Pope.!® We define the matrices 5 x 5 H,’;, .7,;\, I,’,\ such that

Tﬂg* +§*Tn _ %{T"§*}6 — ZH;\]TA
A

T’?Qr _ Q*TT] - Z L77;\111/\
A

6§ &3 2 § 61
nfZ_ 2 - = n{2l _2 - AmaA
T (3 5 ) 3 T 375 6 EA:I,,T. (48)

The elements of the matrices are determined from the above equations by making use of matrix rela-

tions stemming from the Cayley-Hamilton theorem. Next, the coefficients of the tensor polynomial

are obtained from

Ct=—g7 [bléu +by630 + b3 D _CTHY — by Y CTY — bsbox — bGZC"Iz] . (49)
n n

n

The resulting model for the anisotropy of the Reynolds stress tensor is:

2
a= 20,7 [st +(Q1 + Qa)bag fora® (55 - 5(2)) + Qobighir(S'Q-Q S )]

—2C,7[R* + bagiT(R*Q - 2 R*)] (50)
The parameters C, and C}, are given by:
b 2
Cu — > 2lg.f]/ - (51)
1 - Z(bagr0o)? fi fo = 2(bag fi7w)
bag f1/2
r_
= T 2 frro (52)
and by [{S*R*) (S'R*Q)
Ql = 1+b_2 _:?—+29f1Tb4;_2—_:] (53)
1 o o
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=14= o)
Q2 t 31 - 2(b4gflrw)2 3 1

by 1- 2(bag fr7w)? 55
b]bg 2gf1T02 ( )

2_(bagrol’hifs (o _qy_Ybeyp, (54)
b

Q3=

with fi=(1+ beg7/6)" ! and fo = (1 - begT/6)7 1.

2.3.2 ATFM

The temperature flux transport equation reads:

oplT"y | op(uT ) OBy T") + T 8 — T 05i(u’))

a 81?_7‘ - 8va
T, n T e O 7 OB = 00;5i((u))
e p<< UG T T T on T e, taCeuwp
L0 [m pOT) w0 ATy _p 9wl )T
dz; | PrRe ia:rj PrRe 0z Oz; PrRe 0z Oz, sily )sz
NI - 0 o o O 2,0 Ou
—(~ — N INTL T i} T 2 - O
(y—1)p ((u,T ) 9z, +{ ><u1 7z, +{uT 3z, +(y-1)M U Tki G (56)

Modeling of T" (following the methodology used by Ristorcelli*” in deriving a model for Z:) From

the instantaneous the mean is subtracted:

6 o0 e mse (O
a(pT—p(T))Jr (pTu; — p(THy;) = RHS = 3z, (PTRC 7, T-i’))

oz;
ou; Ju; du; ou, _
—_ —_ 2 273 et} — y 2 .. il it Yy — (L
y(y - HM (pal_j paxj) +y(y- 1M (%(U)axj Uu(u)azj) + yCe(wp —wp). (57)

Obviously RHS = 0. After expanding the differences on the left hand side, the terms are expressed

in non-conservative form and the resulting equation is divided by the instantaneous density. After

using the approximation 1/p=1-p/p+...)/p the equation is averaged and the terms of order

> /p? /7 are eliminated. For example, the difference term (T Y-u.T" = p'uw,T"[p~O(/p?/P)

is discarded. This results in:

T _.o0u, —oT)  {uT) dp
D =T 9z, “ies, V5 01 (58)

Precedent contributors?® 47 have represented the term correlating fluctuating divergence with veloc-

ity fluctuation by a linear relaxation model. Because both the divergence-temperature correlation
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and T" are scalars the following relation is valid on dimensional grounds:

Bu T
™1 - _—_
dz; 14 (59)
where 74 = M,7 is the acoustic time scale. Next, assuming that the quantity T"/,/(T"?) reaches a

near-asymptotic state we have

DT = P,
Z T (-"——1) (60)

where Py is the production of temperature variance. Combining the the equations 58, 59, 60 the

following expression is obtained:

=, ((47‘")% - ﬁam) (61)

7 Oz

where 7, = M;7/[1 + —%%%—A!t(f’g/(ﬁ €) — 1)]. Similar to the treatment of the Reynolds stress,

the temperature flux equation is transformed into the equation for the correlation coefficient

T")

9 = (e, S (62)
VIRNT2)
and the transport equation reads
_Dv, 1 OTy o [ (k) 0T} 9 [(T7?) 9Ty
p = - = e — — —
Dt (k)(T"2) Jz; 2\ (T"?) Oz; 2 k) 3$J
D9 [ Ps 4 (P M+V+pd-5%
[<T2>(ﬁ? *1>+2T<7)a H 7 e )]
1
+———=== [Py + i» - P @], (63)
(k)(T"2)

where the notation D/Dt indicates the convective transport, Tt‘j, T’9 and T; denote turbulent

transports of the temperature flux, the temperature variance and the kmetlc energy, respectively.
Moreover Py = —/(k)(T"2)9;0(T)/dx; is the production of temperature variance and the remain-

ing quantities are the normalized production, pressure-gradient correlation and flux dissipation:

Rﬂ=—<mu”4wx%+§%¢§?+ﬂwwmw»+mxwm+%mwauw) (64)

The pressure-temperature gradient model

@, - 7 e = Ai + 29T Sn((w) + Qi (u)) (65)
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The linear nature of the temperature equations imposes that the integrals Z;;x as well as the vector
A; be linear in the turbulent flux. Therefore

A = —Ch9p €J;
T
-——(—;)—ik;q = Brbij Ok + B2(bix?; + 6ixd;) + frag; 9k + foain?j + aind;) + fabijany?, (66)

The symmetry constraints are satisfied for the above form for Z;;x. To determine the coefficients
more constraints are applied: the normalization condition which translates into I;; = (w;T").
The incompressibility condition is replaced with Tige/\/(k}(T"2) = EM2/2(9; + aix¥i), where the
constant £ has to be calibrated from DNS. These conditions are still insufficient for the deter-
mination of the constants fy, f2, fs. These coefficients were chosen so that Z;;r proposed by
SLC89 is recovered in the incompressible limit. Realizability criteria is based now on the tensor
dik = (T W, T) = (5 )(T™2)) /(w77 ) (uy T) — 2(k)(T"2)) and the linear function of the in-
variants of d;x Fp = 9/2— 27d§j/2 +9d13]-, I14 is the second invariant of the tensor djy, dfj = d;idy;
and d?j = j(d]mdmj.

T(u, T ) Ae = (T"?)(Aee — %ﬁ )+ 25 es(ul?) = CF} as Fp — 0
8 " n__n
6<:Z>(<T 2)Ipeqc - (ueT )ICP(]) — O as FD — 0 (67)
.5 € o .
— = -prTﬂmArFDr +p [(CI + ¢2) S5 ((u))59 + (€1 — ¢2)5((u))d;0
(k)(T"2) (k)
+(ea3 + ca)ai; S5 ((u))is + 5@k S5((u))rs + (3 — ca)ai;j Qi () )Iro
1
+es a8 ((v))Dus + caa;n S5((u))diw + §£Mf(19,-19 + aikﬂkﬁ)S;p((lt))} B,F&r (68)

where Ci9 = 3.2, ¢; = 4/5 ~ EM?/5, ¢ = —1/5 4 3EME/10, ¢3 = 1/10 + EM2/2, ¢4 = —3/10 +
3EM?/2, ¢s = 1/5— EM?. The parameters are a, = 0.1, 8, = 0.5, A, = min(Fp%, 0.17°7)
and B, = min(FBﬁ', 0.177). The coupling between the species and temperature reflected in the
temperature flux equation for the reacting case with heat release is neglected for simplification

purposes. Using all the present information the equation for 4 is:
v+ DyAd+ Cy=0 (69)

where the coeflicient Dy = 27hyg, with

€ P
hy = ‘ZATFngm__i -14(14 QC4Bngr)__ — + 7y (:Tg_ - 1) +
€s P Es P €y
—_— -1
2T + ’d‘—?c -
S = AMEB ), ((u)) + ___;E—p] , (70)
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where rg = 2(k)(€s/(€s(T"?)) is the time scales ratio. The vector term reads:

(k) 2 (T)
Cis = Dy feal} [aki + 551« - b2TtRik] D1y (71)

Due to the nonsymmetric properties of the second order tensor A an anisotropic turbulent diffusivity

tensor will be obtained in the final model.
A = Al 5 DR = [1 = (€3 + ) B, FE185((w) + [1 = (1 = ¢2) B, FE 1 Qu((u)) —
{(Ca + ca)ai; S5 ((u)) + esa; STi((u)) + (€3 — ca)ai;Qx((u)) - Csaka‘jS((U))
+3EMPauS ()] BFG + ZRa (12
Now, the solution of the system is conveniently represented in the matrix form:
w9 = -MT1Cy (73)

where M denotes the matrix {§ + DgAl.

To provide a computationally efficient algorithm, the matrix M is inverted analytically. This is
achieved via the use of the Cayley-Hamilton theorem and yields an expansion on the minimal
vectorial basis for this problem:

2
@5 =Y a,A"Cy (74)

n=0
2.3.3 ASFM

The methodology used for the temperature flux is now applied to the scalar flux which is transported

according to the equation:

Ol Y,) | It Yolw) _ d@(wuiYy) + #¥aby — Yoo(u'))

ot Ox; Oz;

Ve (o n 0Va) e Bw)) o 0P | e dou(() | —e

+p 3. p ((uJu,) 7z, + (u;Y,) 9z, }"6 +Y, oz, + u g

i} g 2 0Y, 7 Bu oYa) p ou; 8y, N
+8xj {ScReu‘ 0z;| ScRe 83:1 dz;  ScRedz; dz; ~ sl )8:5]- (75)

where the reaction source term can be approximated by:

o, = —Daexp |-Ze [ — = (u; Yo Y5) + (ui Yy )Y, Y)Y, 76
o= p T~ Ty P((u + (u Yg {{Ya) + (u; Y, ¥p)). (76)



The model derivations leading to expressions for the averaged Favré fluctuations, pressure scalar
gradient correlation are identical with the ones presented for the temperature related quantities.

For Y, we have:

= w05 _—=0(Ys)
pYy =Ts ((uﬂa)a—zj - pu; 7z, ) (77)

where 7, = My7/[1+ ﬁ(,fg)f;'—aﬂlt(Pa/('ﬁ €,) — 1)]. The correlation coefficient

Pio = —=== (78)
Vv (EHY,?)
evolves according to
P (am _ e [0 O e 067 27;)
Dt (k)ﬂ’c:?) 3.’1,‘] 2 <Yo2) BI] 2 <k) sz
ia€a Pa Sa ] P V Yd-7p €
Sl (_ — 142 )+"°— RS PG AL LX)
(Yo%) \P € P €a 2r \P % P €s
1
—‘,:—'[Ra + q)ia - ﬁ €in + Sia]v (79)
(k)(Y,?)
where the notation is similar to the temperature flux case, for example
Py = =/ (k)Y ?);a0(Y,)/0z; is the production of scalar variance. The terms that appear extra

with respect with the previous case are due to the reaction source term and they are: S, = (W, Y, )

which is the chemical source term in the (Y, ?) equation and similarly for the flux equation,

—

Sia = ~Da—m====(0ia(¥5) + wig(Ya) + Yiap\/(¥5?)). (80)
(k)(Y,?)

[

Here viap = (u,}’0)"3)/‘/(11)()02)(}132) is the normalized covariance flux vector. It is worth

mentioning that for the pressure scalar gradient model the realizability is based on the tensor
d;i = ((uj}’a)(ukYa> - (u;ul)()’c:?))/((u;)’;)(u;}’;) - ‘2(19)()’(;2)). The final form of the model is
the same as for the pressure temperature gradient model, replacing the temperature flux with the
scalar flux along with the appropriate normalization. This procedure leads to an algebraic system
of equations for the two unknown vectors ¢;, and ;3. For the mixing case the two vectors are
uncoupled and the solution is matricially the same as the temperature flux. The reacting can be
solved exact, but due to chemical coupling the solution will be too complicated to be of practical
use. Therefore either the mixing solution can be utilized or a perturbation solution of the react-

ing case, the small parameter ¢ = 7,/p%. The fluxes are decomposed as @, = ¢2 + £}, and
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Yig = cp?ﬂ + Ecp}ﬂ. The solution is obtained from the system of equations

{ Pa + Da(A’+ eR)pa + Bapp+ Co =10 (81)
¢+ Dp(A"+ eR)pp + Bgpa + Cp =0
where the coefficients are
D, = 27h, : ,
1+ 2Dapexp [——Ze (z%; - T})] Tho(Y3)
1 1
B, = Dapexp [—Ze (— - —)} (Yoa)Dy, 82

And the vector terms read:

(k) 2 0(Ya)
%0 <aki + §5ki - bQTtRik) 92,

Da B exp [-ze ((—;15 - Tij)] ,/(Yl‘,ﬂ)y,-a,,} (83)

The terms indexed with 3 are obtained from the a indexed terms by the permutations a« — 8 and

Cia:Do[ +

B — a where necessary. The parameters h, and hg have the same form as hy (Eq. (70)) with the

respective change of index. The solution of the system (81) given in matrix form:

‘pg = —l\/I_l [(6 + DBA)CO’ - Bocﬂ] (84)
(rgg =-M"! [(6 + DaA)Cﬁ - Bﬁca]
(’gal =-M-1 (5 + DﬁA)DaRG‘Qg - BC'DﬁR(’Dg (85)
@p! = =M1 |(§ + DaA)DsReY — BgDa R}

where M denotes the matrix [(1 — BoBg)é + (Do + Dg)A + Dy DsA?]. Using the methods men-

tioned in the temperature flux section and described below results:

2 2
Yo=Y aA"Cot Y a,A"Cp. (86)
n=0

n=0
2.3.4 Explicit Solution

The procedure leading to explicit solutions for the turbulent fluxes vector is described. Consider an
arbitrary three-dimensional second-order tensor Q = [Q;;] and the corresponding Kronecker tensor
§ = [6i;]. According to the Cayley-Hamilton theorem, this matrix satisfies its own characteristic
polynomial:

Q- 10Q* + I1pQ - I1Ig6 =0 (87)
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where Ig = {Q} = Qui, I1g = 3{Q}?-{Q?}] = }[QuQ,; - Qi;Q;i), ITIq = g[{Q}°-3{Q}{Q?} +
2{Q%] = %[Qiinijk —3Q::Q;xQx; +20Qi;Q;xQx:] are the three tensorial invariants. Multiplying

the characteristic polynomial with Q™! and solving for the inverse we obtain:

1

- 2 _
= I]IQ(Q IoQ + 11g6). (88)

Q—l

This relation can be used now to find explicit solutions to the problem considered here. We can

write:
e = —-(6+G)"1C. (89)

Hence:

(6+G)™! (G*+ (2- I54G)G + (1 = Isyg + 15:G)0) (90)

- Il g

It is easy to show that I, g = Ig+{¢}. Ils,g = 2lg+1Ig+{é}, Ills,G = Ig +IIG+111G+i§1.

Therefore the normalized turbulent flux vector takes the form:

o = 6C + 0;GC + a;G*C (91)
with the coefficients: 4 de + IT

_ G G

=1 Ig + g + lIg (92)
1+ Ig
= 93
N1 IG + Hg + g (93)
1

az = (94)

Tl+ilg+Ilg+IIg

The reacting case is somewhat more complex. Nevertheless, by following the same procedure

explicit solutions are obtained:

¢o = 00Cq + ahCs + a1 AC, + a}ACs + a2A’C,, + ajA*Cy (95)
¢ = boCa + bhCp + bi AC, + ] ACs + b,A2C, + b3A*Cg, (96)

with the coefficients:

Fy(Fa+ D24A%Y) 4 BB, [{A7Y(D4F, — ED4)D; - E(E + 41D, Dy)|

% (1= B.B)(F.Fs — E2B.By) o O0)

Fo(Fs + D380 4 D, A (D Fs — EDj) - EB.By(E + 41D, Dy)

I
- B, (O
o =15 (1= B.Bs)(F.E; — E2B, Bp) (98)
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_ BuB3|E(Dg— Do)+ FaDpg) — DoFp

“ Do(FuFs — E?B,Bg) (99)
o= E b, o
ay = -B, Fﬁiﬁ ;,f;f"Bﬁ, (102)

with the shorthand notations:
Fa:(l—BQB5>(Do{ATQ}—Dia— B;f")—Dz{f} (103)
Fﬁ=<1—BaBﬁ><Dﬁ{—f—}—Diﬁ— LA (104)
E:(Dia+Diﬁ)(1—BaBﬁ)—DaDg{A33}. (105)

The coefficients b; are obtained from the a;’s through the permutations a — 8, 8 — «, ap — b
g p (1R}

CL6 e b(), a; — b,], a’l - b], a; — b/2 and (1.I2 — bg.

2.4 Results and Conclusion

The theory built in previous chapters will be used to simulate numerically a non-premixed, tur-
bulent reacting with heat release, spatially developing mixing layer over a wide range of Mach
numbers. The simulations are performed on a uniform grid in the computational space. By means
of a coordinate transformation the mesh is transversally compressed in the physical space in the
region corresponding to the actual mixing layer and the equations are solved in vector form. The
numerical solution procedure for the integration of the governing equations is based on a Gottlieb-
Turkel predictor-corrector finite difference scheme.®® The method has dissipative properties and it
is second-order accurate in time and fourth-order accurate in space. The interest at the present
time lies in the steady-state solution and therefore, to accelerate the convergence towards steadi-
ness, a local time stepping technique is used. The convergence criteria is imposed to be that the
reduction of the steady-state residual in average sense attains a minimum acceptable level. More

specifically, the simulation is considered at steady-state when is observed at least a 1.5 order of
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magnitude reduction of a global quantity, such as the absolute value of the residual averaged over
the whole domain. Figure 2.1 shows a typical evolution for the the previously mentioned quantity
obtained with the Gottlieb-Turkel scheme. Although the criteria is quite stringent it is known5?
that predictor-corrector type of schemes are not able to achieve better rates of residual reduction.
The set of initial conditions is obtained by propagating the inflow conditions throughout the entire
domain, hence, in this procedure, the flow has to sweep at least one time the domain to obtain a
meaningful result. The boundary conditions are set according to the elliptic nature of the problem
on all four boundaries. The inflow BC specifies smoothed step or smoothed hat profiles for the
primary variables. At the outflow and outer boundaries zero gradient boundary conditions are
applied for their nonreflective properties in relation with the outgoing waves. The grid overlay-
ing the computational domain of 1206, x 606, had 128 x 64 points, where the vorticity thickness
6o = (w1 — u2)/(0u/0Y)maz- In the first stage of this work we have concentrated mainly on hy-
drodynamics. Test simulations were performed with simplified versions of the algebraic model for
the Reynolds stresses. The particular set of conditions for the two streams of air were a prescribed
velocity ratio 7, = 1/4 and equal thermodynamic properties. The issue of reduced spreading rate
of the shear layers with increasing free stream Mach number is well established experimentally.
The compressibility effects parameter called convective Mach number correlates with the growth
rate normalized by its incompressible value at the same ratios for velocity and density®? and had
the expression in this case M, = M (1 - r,)/2. The fully developed shear layer at high Reynolds
numbers grows linearly and the spreading rate can be expressed as dé, /dz = Cs(1 — r,)/(1 + 1)
where § = §(z) is the thickness of the shear layer based on the normalized velocity profile and Cs
is constant (approximatively). Figure 2.2 represents the downstream-evolution of the shear-layer
width. The linear growth is attained after a phase of development near the inlet. The confirmation
that a fully developed regime with linear growth has been installed in the flow, stems from the
self-similar property of the velocity profiles and normalized Reynolds stresses. As it can be seen
from figures 2.3, 2.4, 2.5 the profiles, plotted in similarity coordinates, collapse for each axial co-
ordinate considered in the outflow region of the domain. The temperature profile shows the same
self-similar behavior as the other mentioned quantities and as a result of the velocity gradients
displays an increase in the middle of the layer. The correlation profile of the normalized Cs versus
M. has yet to be completed. The simulations will be continued with the full set of algebraic models

and tests will be made for the entire range of interest of convective Mach number.

The purpose of the efforts in this part of our activities was to develop closures for the “second order
moments” in the contexts of both RANS and LES of high speed turbulent flows. In particular,
we have obtained a complete set of explicit algebraic models derived from a hierarchy of second-
order moment closures that are valid for compressible turbulent flows. The primary methodology
based on the Cayley-Hamilton theorem and its corrolaries was developed during the past twenty
years!® 191 and the present work extends it further. The models are based on new compressible
closures for the pressure-strain and pressure-scalar gradient correlations. Explicit algebraic relations

are provided for the Reynolds stresses, velocity-temperature and velocity-scalar correlations in both
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non-reacting and reacting flows with heat release. As theoretical novelty we mention that density
gradient, pressure gradient and mean dilatation effects are included in the models. Also, the role
of the turbulent Mach number and Damkéhlernumber is exhibited as well as compressibility and

variable inertia effects for application of the models to turbulent flows with nonpremixed reactants.

3 Monte Carlo Large Eddy Simulation of Reacting Turbulent

Flows

3.1 Introduction

The purpose of the efforts in this part of our activities is to develop and implement a robust
computational procedure for LES of turbulent reactive flows. The procedure is based on a Monte

Carlo solver for the Probability Density Function (PDF') of Subgrid Scale (SGS) of reactive species.

The purpose of the efforts described in this report is to develop and implement a robust compu-
tational procedure for Large Eddy Simulations (LES) capable of capturing the intricate physics
associated with turbulent reactive flowfields. LES is considered somewhere between Direct Numer-
ical Simulation (DNS) and Reynolds Averaged Navier-Stokes (RANS) computation.33-58:11:59 Qver
the past thirty years since the early work of Smagorinsky®® there has been relatively little effort,
compared to that in RANS calculations, to make full use of LES for engineering applications. The
most prominent model has been the Smagorinsky eddy viscosity based closure which relates the
unknown subgrid scale (SGS) Reynolds stresses to the local large scale rate of flow strain. This
viscosity is aimed to provide the role of mimicking the dissipative behavior of the unresolved small
scales. The extensions to ‘dynamic’ models®?* has shown some improvements. This is particu-
larly the case in transitional flow simulations where the dynamic evolutions of the empirical model

‘constant’ result in (somewhat) better predictions of the large scale flow features.

A survey of combustion literature reveals relatively little work in LES of chemically reacting turbu-
lent flows.?>'%® It appears that Schumann®® was one of the first to conduct LES of a reacting flow.
However, the assumption made in his work simply to “neglect” the contribution of the SGS scalar
fluctuations to the filtered reaction rate is debatable. The importance of such fluctuations is well

rd . . . —
12,15,1117 414 chemical engineering®”~7°

recognized in RANS of reacting flows in both combustion
problems. Therefore, it is natural to expect that these fluctuations will also have a significant

influence in LES.

Modeling of scalar fluctuations in RANS has been the study of intense investigations since the
pioneering work of Toor.”! The aim of statistical moment methods is to provide a closure for
these correlations in terms of mean flow variables. Because of the lack of models with universal
applicability to accurately predict the scalar correlations in turbulent reactive flows, simulations

involving turbulent combustion are often met with a degree of skepticism. Another approach which
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has proven particularly useful is based on the Probability Density Function (PDF) or joint PDF
of scalar quantities.” 3573 This approach offers the advantage that all the statistical information
pertaining to the scalar field is embedded within the PDF. Because of their capabilities, PDF
methods have been widely used in RANS for a variety of reacting systems (see Dopazo™ for a recent
review). A systematic approach for determining the PDF is by means of solving the transport
equation governing its evolution.”® In this equation the effects of chemical reaction appear in a
closed form. However, modeling is needed to account for transport of the PDF in the domain of the
random variables. In addition, there is an extra dimensionality associated with the composition
domain which must be treated. An alternative approach is based on assumed methods. In these
methods the shape of the PDF is assumed a priori usually in terms of low order moments of the
random variable(s). Obviously, this method is ad hoc but it offers more flexibility than the first
approach. Presently the use of assumed methods in RANS is justified in cases where there is strong

evidence that the PDF assumes a particular distribution.”®="7

Despite the demonstrated capabilities of PDF methods in RANS, their use in LES is limited.55 78,59

The first application of PDF-LES is due to Madnia and Givi’® in which the assumed Pearson family
of PDF’s are used for modeling of the SGS reactant conversion rate in homogenous flows under
chemical equilibrium conditions. This very same procedure was also used by CR" in the LES of a
similar flow. The extension of the model for LES of nonequilibrium reacting flows is reported by
Frankel et al.® for LES of reacting shear flows. While the generated results are encouraging, they
do point out the drawbacks of assumed PDF methods. These can be overcome only by considering

the PDF transport directly.

The approach advocated here is to solve the transport equation for the PDF. Because of the added
dimensionality due to the compositional variables, solution of the PDF transport equation by
conventional numerical methods is possible in only the simplest of cases.8® An analysis performed
by Pope®! suggests that the solution of the joint velocity-scalar PDF by finite difference methods

is impractical for more that three scalars.

The numerical solution of the subgrid PDF may be accomplished by means of a “Monte Carlo”
scheme. The use of such schemes in RANS has proven very effective,”? however no attempt has
ever been made to utilize Monte Carlo schemes in the context of LES. Two classes of Monte Carlo
schemes exist. In the Eulerian type scheme, the PDF within the subgrid is represented by an
ensemble of M computational elements at fixed grid points. These elements are “transported” in
physical space by the combined actions of large scale convection and diffusion (molecular and sub-
grid eddy). In addition, transport in compositional space occurs due to the processes of chemical
reaction and molecular mixing. Preliminary implementation of an Eulerian Monte Carlo method
for LES of a non-reacting mixing layer has been performed in unpublished work. The Smagorinsky
closure was used for the modeling of the subgrid eddy diffusion and the stochastic model of Curl®?
was utilized for modeling of the molecular mixing. Unfortunately, the results were quite discour-

aging. The major difficulty with this formulation lies in the numerical implementation of the large
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scale convection. Due to the nature of the grid based scheme, excessive artificial diffusion is created
which greatly degrades the solution of the large scale structures. It is important to realize that
the errors induced by this scheme are not at all due to the PDF formulation itself but rather to
the numerical implementation of the closed mean convection term. A remedy for the problem is to
divorce from the Eulerian discretization and to invoke the Monte Carlo solver for the LES-PDF in

a “grid free” Lagrangian manner.

In this work we provide a computational methodology for solution of the PDF of SGS scalar
variables in LES of reacting flows under nonequilibrium chemical conditions. The solution procedure
involves the transport of N Lagrangian elements within the “whole” computational domain of
interest. The advantages of Lagrangian numerical procedures in reducing numerical diffusion in
DNS are well-recognized 83786 In this Lagrangian framework, the elements are free to move anywhere
within the domain. The particles carry information pertaining to the scalar field only; the LES
of hydrodynamic variables is conducted by conventional Eulerian finite difference procedures. The
effects of convection and diffusion are to move the elements in physical space, while the eflects of

mixing and reaction are to modify the compositional makeup of the elements.

3.2 Governing Equations

The primary independent transport variables in a compressible, two-dimensional flow undergoing
chemical reaction are the density p, the velocity vector u;, the total specific energy F, the pressure p,
the temperature 7', and the species mass fractions f, (a = 1,2, ..., N;). The conservation equations
governing these variables are the continuity, momentum and species mass {raction equations, along
with an equation of state relating thermodynamic variables. They are expressed as:

Continuity :
dp  Opu;

T oz, =0 (106)

Conservation of momentum :

Opu;  Opuwu; Oy
= 1
at + dx; ox; (107)
Conservation of total energy :
OpE  Opw;E  Oru;  Og
= - = 108
ot + dx; dz; Ox; (108)
Conservation of chemical species :
a a (9 1S aJO .
pla  Opuifa _ _OJF (109)

ot (9.7.‘,' a (9.73,‘
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Equation of state :
N,
p=pR°TY_ fi/M; (110)
=1

The total specific energy is given by :

N, 2 2
E:Zh,-f,-—g-i-u;U (111)
i=1 P
and the enthalpy of species 1 is defined as
T
hi = RO+ /T e, (T")dT' (112)

Additionally, the viscous stress tensor 7;;, heat flux ¢; and mass flux J of chemical species a are

given as: 5 5 5
SR LT NP L.
Ti; = bi;p+ “(83:] + 9z, )+ 6‘1/\8“ (113)
or
¢4, = — ‘5; (114)
JI = —ngif (115)

3.2.1 Modeling of Unresolved Scales

The aero-thermodynamic equations of the previous section constitute a complete set of governing
equations. Unfortunately, due to the limited power of today’s computers, it is impossible to accu-
rately solve these equations for typical engineering problems. The great variation in length scales
would require grid resolutions that would be too prohibitive for even the fastest of today’s super-
computers. RANS provides the engineer with an alternative; instead of obtaining a fully resolved
solution which can be afforded in only limited cases, time averaged solutions which do not attempt
to resolve the the fine structure of the turbulence could be attempted. Due to the non-linear nature
of the equations, the time averaging procedure yields unclosed terms which have been the focus of
much attention in the past. On the other hand it may be desirable to resolve some of the lower
frequency turbulent structures. Instead of averaging over all time (and implicitly length) scales,
LES attempts to resolve the larger, energy containing eddies. Because only the finer turbulent
structure is modeled, it is expected that LES models would be more universal in application. This

is accomplished by use of a local spatial filter:

+oo

&(x,t):/ B(x,1)G(x' — x)dx’ (116)
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The fluctuation about the filtered value is given by

¢ =¢—¢. (117)

The filter G(x) can take many forms. In this work we have elected to work with a local volume

average box filter. For compressible flows, it is desirable to work with Favré averages:

5=£2 (118)
p
and the fluctuation about this mean is denoted by
" =¢— ¢ (119)

For compressible flows with reaction it is convenient to work with the density weighted mass fraction

Foa=pfalp (120)
so that F, = fa. Note that while
N,
S fa=1, (121)
k=1
N,
Y. Fa=p/p#lL (122)
k=1

When the LES Favre averaging procedure is applied to the governing transport equations, the result

is:
dp | Opui _
2t hm - 0 (123)
3?17] aﬁﬂl‘ﬁj _ 0?1‘1 o7T;
or T ow  da  Om (124)
OpE  9puE  omm;  0g 90
o0 T Tor, T o, 0z, O (125)
0pfs  OPLf. 0T, OMZ . ‘
ot + oz; Oz TS o (126)
where
T = pla, - ;) (127)
Qi = p(wE - %E) (128)
ME = pluifo ~ Uifa) (129)

are unclosed terms and therefore a model must be provided to account for their effects.

In this preliminary work, which is restricted to no heat release and low compressibility, the in-
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compressible Smagorinsky eddy viscosity subgrid model is employed. The use of an incompressible
model is justified in lieu of the fact that the density variations are expected to be quite small. Using

this formulation, the SGS stresses are given by:

~

Tij = (8i5/3) Tk = — 20555 (130)

where §j.~ is the large scale strain rate tensor. A similar eddy viscosity formulation is used to close

the SGS heat and mass fluxes:

R 12 T

Qi = Pr. 8z’ (131)
o __ It 8}:01

MP = ——Sc, —Bz,-' (132)

The Smagorinsky eddy viscosity is given by:
= pCsA?|S|. (133)

where |§| = \/2§ij§,~j and A is the filter width. In this work, the constants Cgs, Pr, and Sc¢; are
set to the values 0.010,0.7 and 0.7, respectively.

Thus far we have not yet addressed the issue of how to deal with SGS scalar correlations in the
filtered chemical source terms. While the SGS terms discussed in this section are of a convective
nature and they can be reasonably well modeled by a diffusive process, the same cannot be said
for the unclosed terms in the species production rates. Because the physical mechanism of the
SGS stresses and fluxes is inherently different from the scalar correlations in the source terms, it
is expected that the models will differ. In fact, when eddy viscosity concepts are extended to treat
chemical source terms, the resulting models (“eddy break up models”) perform mediocre at best.
The focus of the following sections is to discuss how the methodology of LES via PDF (hereinafter
refereed to as LES-PDF) is used to overcome the closure problem of the chemical source terms and

to develop robust numerical methods for the simulation of turbulent reactive flows.

3.3 PDF Methodology

The most common approach to turbulent reactive flow problems in the past has been to solve
the governing transport equations for the Favré averaged flow variables. As a consequence of the
averaging process, unclosed terms appear and must be modeled. This type of methodology is
referred to as moment closure methods as closures must be provided for the unknown correlations.
An alternate approach is consider the joint PDF of scalar quantities rather than to directly solve

the scalar transport equations directly. Once the joint PDF is known, all statistical quantities
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involving the scalar variables can be determined. The average species production rate W, can then
be determined since it is dependent on such scalar correlations. The natural starting point for the
consideration of PDF methods is to examine the transport equation governing its evolution. First,
however, it is convenient to discuss some preliminaries. The following is intended only as a brief
review and is by no means complete. For further information the reader is encouraged to consult
one of the many fine texts on stochastic analysis such as those by Schuss®” and Papoulis®® and

Billingsly.®® An excellent reference of PDF methods in the application to turbulent reactive flows

is provided by Pope.”

3.3.1 The Probability Distribution Function

Let ¢(z,t) be a random variable. The possible values that can be assumed by ¢ constitute the
sample space. In general the sample space may consist of all of the real numbers, but further
physical restrictions may restrict allowable values to a subset of the real numbers. For example,
the thermodynamic temperature 7 can only take on non-negative values. If we regard T as a
random variable, the sample space of T consists of all the non-negative real numbers. In a similar

manner the sample space for the mass fraction of any species consists of all the real numbers from

0tol.

The probability distribution function (also commonly referred to as the Cumulative Distribution

Function or CDF) is defined for a continuous random variable ¢ by:
Fy(v) = P{¢ < ¢}, (134)

where P{A} is the probability that the event A occurs. The probability of an impossible event is

zero, while the probability of a certain event is unity. Some fundamental properties of CDF’s are

Fy(—o0) = P{¢ < —oc} = 0, (135)
Fy(+o0) = P{¢ < +o} = 1, (136)
8F i}

The last requirement merely states that the CDF is a non-decreasing function.

The probability distribution function is useful because we can use it to determine the likelihood

that a random variable will fall between two values. For example, the probability that the random

variable ¢ will fall between the values ¥, and 1y is given by

P{va < 0 < 1} = Folva) = Folvs)- (138)
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3.3.2 The Probability Density Function

The PDF is defined to be the derivative of the CDF:

dFy(3
fo(¥) = ——;”;(bi)- (139)

The PDF, like the CDF, is useful for determining the probability that a random variable falls
between two values. Upon integrating Eq. (139) between %, and 1, the following is obtained:

Plve <9<} = Folt) — Fo(tn) = [ Jalp)d (140)

Over a small interval f;Av is an approximation to P{y) < ¢ < 9+ Ay} = AF, and in the
limit fy(t)dy represents the differential probability dFy that the random variable ¢ lies in the

infinitesimal interval of width dt in the vicinity of .

Some fundamental properties of the PDF are

Jo(#) 2 0, (141)
fo(—00) =0, (142)
fe(+o0) =0, (143)
+oo

[ et =1 (144)

3.3.3 Determination of Mean Values from the PDF

Let A(¢) be a function of the random variable ¢. In general, the ezpected or mean value of A(¢),

denoted by A(¢) or <A(é)> is given by the expression:
_ +oo
A(e) = <alop = [ AW uw)dv. (145)

-0

(From this equation the PDF can be regarded as a normalized weighing function that assigns
various weights to each possible outcome in the sample space. The integration serves to sum over
each of these weighted possibilities to yield the expected value. The term ensemble average is also

used to denote the mean.

In particular, the mean value of the random variable ¢ is simply

- oo
o= [ wfaeidy, (146)
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and the nt* central moment is given by
- +oo -
pn = <(¢—@)"> = / (¥ — &) fo(¥)d. (147)
For example, the second central moment, or variance is given by
2 - oo =12
pr=ot=<o- 9> = [ (¥- B alw)d. (148)
-0

The variance represents the mean value of the square of the fluctuation and is useful in determining
how a random variable fluctuates about the mean. A random variable with a large variance deviates
more about the mean compared to a random variable with a smaller variance. The square root of

the variance is called the standard deviation and is denoted by the greek letter o.

In PDF methods, it is often useful to express the PDF as the mean value of the delta function:

fol®) = <6(y = ¢)>. (149)

The delta function 6(% — @) is commonly referred to as the fine grained PDF. Each fine grained
PDF 6(¢ — ¢) corresponds to a realization from the sample space with the fine grain value ¢ = .

This utilization of the delta function is important when we extend the concept of PDF’s to spatially

filtered quantities.

3.3.4 Functions of More Than One Random Variable

Up to the present point functions of only one random variable have been addressed. The corre-
sponding PDF’s are referred to as univariate since they only depend on one random variable. Many
situations, however, require the use of functions that depend on more than one random variable.
The distributions associated with such random variables are referred to as joint or multivariate. For
example, the reaction rate of a chemical species generally depends upon multiple scalar quantities
such as several species mass fractions F, (a = 1,2,..., N;) and the temperature 7. Denote ¢, = F,
forn =1,2,..,Nyand ¢n, = T where Ny, = Ny + 1 s0 that ¢ is a random vector of dimension Ny.

The reaction rate of species a, w, is
Wa = Wal@) = @ald1:, 02, ., &N, )- (150)

Notice that the sample space is a Ny dimensional hypervolume. Each point within this hypervolume
represents a possible composition. Some of these outcomes are more likely than others while others
may not be possible at all. A multivariate PDF is useful for characterizing the entire statistical
behavior of the random field. To introduce the concept of a multivariate distribution, we begin

with a bivariate distribution which involves two random variables. Extension to higher dimension

PDF’s is inductive.
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Let ¢; and ¢; be two independent random variables. The distribution function Fy, 4, (%1, %2) is

given by
Fyy0,(¥1,¥2) = P{¢1 < ¥1,¢2 < ¥}, (151)
and the bivariate PDF is given by
5?
fo162 (%1, %2) = W&m;(%,%)- (152)

The univariate PDF of ¢; may be obtained by integrating the multivariate PDF once:

+o00
fo. (1) =/ fo16, (%1, ¥2)d,. (153)
Similarly,
+00
fort) = [ forealtn va)d. (154)
—co
Some additional properties of bivariate CDF’s and PDF’s are:
F¢1(¢1): F¢1¢2('¢?1,+OO), (155)
F¢2(¢'2) = F¢1¢2(+OO,1,/)2), (156)
Ftb]é?(-mww?):Fd)]wg(lf/)lv—oc)zow (157)
F¢1¢2(+OO,+OO)= I, (158)
+oo 400
[ faatin va)dundya = 1, (159)
- J—oo
fe142(¥1,92) 2 0. (160)

Consider a function of two random variables A(¢;, ¢2). The mean value of this function is obtained

by integrating over the two dimensional region:
_ +o oo
A= / / A1, %2) fon g (1, Vo) dipndidy. (161)
00 J-oo
The covariance Cy, 4, of two random variables is defined as
Coror = (b1 — 612 — &3> (162)
Higher order joint moments of the product dﬁd)ﬁ' are given by

mj = <@l oh>. (163)
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and higher order joint central moments are given by
Kk = <(¢1 — & )j(d’? - 52)"> (164)

Conditional statistics are important in situations where one random variable takes on a prescribed

value. For example, the conditional density fy, |4,(%1|%2) given by

fr, ¥2)

f(¥2) (165)

Sons:(¥le2) =

is the probability density function of the random variable ¢; for a given value of the random variable

¢,. Conditional mean values are given by the expression

+oo

A(¢1]¢2) = /oo | A1) foy 10, (V1]b2)din (166)

and is essentially the average of the function A at a fixed value of ¢,.

Extensions to more than 2 random variables is inductive. For example, the mean of the reaction

rate W (o1, P2, ...y ®N,) Tequires knowledge of the joint PDF f(o1, 02, &N, ):

. +oo +oc +oo .
Sam [ [ [ a0 e oS (1 Y )Y, (167)

(When there is no fear of ambiguity as to what random variables are involved, the subscripts for

PDF’s and CDF’s may be dropped).

The extension of Eq. (149) to more than one random variable is:

fp(¥) = <b(¥ — @P> = <b(vh1 — ¢1)8(¢2 — ¢2) - (¥, — ON, > (168)

3.3.5 Large Eddy PDF

The PDF’s considered so far are not fully suitable for LES since they do not contain any information
about the filter G(x). A “Large Eddy PDF” that is consistent with spatially fillered quantities may

be defined as follows:%?

fugixn = [ 616 - o016 ~ x)ax (169)

The Large Eddy PDF is therefore seen to be the spatially filtered value of a delta function in contrast
to the “conventional” PDF which can be defined as the ensemble average of a delta function. In

either case the delta function is the fine grained PDF introduced in section 3.3.3

Evaluation of spatial averages and moments is achieved by integrating with the Large Eddy PDF
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just as ensemble averages and moments are evaluated using “conventional” PDF’s. Consider the
function A(¢) of the random vector ¢(x,t). The filtered variable A(x,t) is then given by the

expression: . .
Z(x,t)=/ A(x’,t)G(x’—x)dx’:/ A (%, x, D). (170)

—o0 -0

For compressible LES, it is useful to define the Favré PDF fL = pfr/ < p >. The Favré filtered

variable /Z(x, t) is then given by the expression:

Alx, 1) = /+°° A(S) (3, %, 1) d. (171)

-0

3.3.6 PDF Transport Equation

The transport equation for the joint compositional PDF in a turbulent reactive flow is given by:"?

Olpe)fr) | Ap($)aifr) | Blp(¥)ca($)N1] _

ot Jdx; 3%
D [/19J2, \_ =1 0p(¥) ¥ fi]
N [<; dx; |¢> p(¢)fL] - dz; ' (172)

Summation over a = 1,2, ..., Ny is implied. In the context of Large Eddy Simulation, the PDF fL
has a slightly different meaning than that intended by Pope; the PDF here is the Favré filtered
Large Eddy PDF as described in section 3.3.5. The first two terms on the left hand side of the
equation represent convection of the PDF by the mean flow in physical space. The last term
on the left hand side is due to chemical reaction. Note that this term is closed and requires no
modeling. This is the major advantage PDF methods have over other approaches. Also note that
the derivative is in compositional space rather than physical space. This is reflected by the fact
that the chemical reaction serves to change the compositional makeup of the mixture rather than
to provide a mechanism for motion in physical space. The first term on the right hand side is due
to molecular mixing. Molecular mixing, like reaction, provides transport in compositional rather
than physical space. In general, the mixing term tends to homogenize the fluid and hence lowers

the scalar variance. The remaining term represents turbulent transport of the PDF by the small

scales.

3.3.7 Modeling of Unclosed Terms

The two terms on the right side of Eq. (172) are unclosed and therefore a model must be provided

to properly account for the effects they have on the larger scales. In the present work, a simple
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gradient-diffusion model has been employed for the turbulent transport term:

afL

P, (173)

p<u|> fr = —Ty

where I'; = p/S¢;.

The modeling of the molecular mixing term has been the focus of intense investigation in the
past.82:91.80,92 Many mixing closures fall under the general category of Coalescence/Dispersion
(C/D) models as characterized by Pope.®® Curl’s model and the modified Curl model of Janicka
et al.® fall in this category. In the present work, Dopazo’s deterministic relax to mean model has
been utilized. Kosaly®* has shown that Dopazo’s model belongs to the general class of C/D closures
under certain limiting conditions. This model has been selected due to its ease of implementation
into the numerical solution and its efficiency. Although the use of different mixing models results
in different behavior of moments of the third order and higher in 0 D turbulent mixing simulations,

it is expected that the difference under more realistic conditions will have little effect on mean flow

quantities.

3.3.8 Langevin Equation

The basis of the numerical scheme used for the solution of the PDF transport equation relies upon
the principle of equivalent systems.” Two systems that display dissimilar behavior may actually
have identical statistics. In the Lagrangian solution technique used to solve the compositional PDF
equation, Monte Carlo particles are distributed throughout the flowfield. Each of these particles
carries information about the scalar field. Additionally each of these particles obey certain equations
which govern its motion in three dimensional space. It is important to recognize that the Monte
Carlo particles are not fluid elements. In fact, while fluid particles follow smooth trajectories,
the Monte Carlo particles follow trajectories which are continuous but not differentiable. The
importance, however, of the Monte Carlo particles is that they are developed in such a way such

that they evolve with the same PDF associated with genuine fluid particles.

The Monte Carlo particles undergo motion in three dimensional space by convection due to the

mean flow velocity and diffusion due to molecular and turbulent viscosities. This type of general

diffusion process is represented by a Langevin equation:”?
19T 2T, /2
axo) = [i,+ Do ars 2] aw, (174)
p Oz, p

where X, is the Lagrangian position of the Monte Carlo particle. The stochastic term W; is the

stochastic Weiner process. The Weiner process is best understood by considering the function
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Wy(t,) which changes value at discrete time intervals:"?
N
Wa(tn) = (A2 Y6, (175)
i=1

where &, (n = 1,2,...,N) are N independent normalized gaussian random variables and the time
interval from t = 0 to ¢ = T is divided into N equal subintervals of duration At = T/N. Consider

the increment
AWy(taoy) = &u(AL)2, (176)

The Weiner process can be defined as Eqgs. (175)-(176) in the limit At — 0. Note that although

the process is continuous, it is not differentiable since AW;/At is undefined as At vanishes.

It must be emphasized that although the Langevin equation given by Eq. (174) is stochastic, Eq.
(172) which governs the transport of the joint scalar PDF is deterministic.

3.4 Numerical Solution

Because of the added dimeunsionality the compositional variables present in the PDF Transport
equation its solution by conventional finite difference or finite volume methods is intractable for
engineering problems. Instead, a Lagrangian Monte Carlo solution algorithm is utilized. It is an
established fact that while the work required by finite difference schemes increases exponentially
with added dimensionality, the work associated with Monte Carlo schemes only increases linearly.%3
Thus Monte Carlo methods provide an attractive technique to solve problems with a large number of
independent variables. The essentials of Lagrangian Monte Carlo schemes in relevance to turbulent

flows are due to.7?

In the solution procedure numerous particles are distributed throughout the domain. Each of these
particles carries information about the compositional makeup of the fluid. Although Monte Carlo
particles and fluid particles are fundamentally different their PDF’s are identical. Thus a solution to
the PDF transport equation can be can be attained indirectly by solving for the spatial location and
compositional makeup of the Monte Carlo particles. The equation governing the spatial location of
the particles is the Langevin equation (Eq. (174)) and the processes of mixing and reaction govern
the compositional evolution. Since the compositional PDF provides no information about the
density or velocity fields, this information must be determined by alternative means. Conventional
finite difference schemes are used to solve the governing transport equations for these variables;
the Monte Carlo procedure is used only to determine the species mass fractions. Additionally, in
the case of temperature dependent chemical kinetics, the energy (or enthalpy) is solved using the
Monte Carlo procedure. In the present research temperature independent kinetics are used and the

total energy equation is solved using finite differences in the usual manner.



3.4.1 Finite Difference Procedure

The methodology used to solve the large scale continuity, momentum and energy equations is the

fourth order spatially accurate finite difference scheme as developed by Gottlieb and Turkell.5% The

generalized transport equation may be written in the vector form:

9U  oF

L OF 3G
ot Oz

t3, =H

where U is the vector of dependent conserved variables:

The vectors F and G are the flux vectors in the z and y directions respectively:

{ _~ 3

(ﬁE - :Fxr)ﬁ - 7-::191./6 + 51} - Qz

P
ﬁ’—ﬁﬂ - ?yx + Tyr
pru — 7~’yy + Tyy

\ (EE - ;yy)a - :Fyr"—z + Eiy - Qy

7

(177)

(178)

(179)

(180)

The source vector H = 0 since the species equations are not solved by the finite difference method

and the body force vector is neglected.

The Gottlieb-Turkel scheme is a higher order accurate variant of the well known® predictor-

corrector method. For Eq. (177) it is implemented in unsplit form as:

At At

Ul =Ul ~ gag~Fieay +8FLy, — TF] - @[—Gﬁﬁ'z +8G 41 — 7GJ;] + AtHY; (181)
% = At »* » - At » - £ d =
Ui =0;, - BE[F{—Z,J' —8F_,; + TF;] - E[Gi,j—z —-8GJ;_; + 7G|+ AtH]; (182)
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The CFL condition for this scheme requires that the CFL number should be less than 2/3 for

numerical stability.



3.4.2 Monte Carlo Particle Method

The species mass fractions are determined using the Monte Carlo particle method. A two stage
Runge-Kutta scheme is used to solve the Langevin equation to determine the particle positions.

For the general diffusion process governed by:
dX;(t) = D:(X(1),t)dt + B(X(t),t)dW(t) (184)

a Runge-Kutta scheme can be written as:

X7 = X!+ DAt + B™(A)V/2%¢r (185)

X = X[ + DAt + BT (At)V%r (186)
) 1. .

‘\F-H - 5{‘}‘1" + )(1.‘ ] (187)

Note that the standardized gaussian random vector &; is the same at the predictor and corrector
levels. This is to ensure that the numerical approximation given by Eqs. (185)-(187) reflects the
Markovian behavior of the general diffusion process.®® Markovian or “memoryless” processes are

stochastic processes in which future states are not influenced by past behavior.87:97:89

The drift coefficients D; and B require knowledge of the mean field velocity and viscosity. Inter-
polation is required for these quantities since the Lagrangian particles are not restricted to the
finite difference grid points. Fourth order Lagrange polynomials are used to interpolate the desired

quantities from the grid to the particle location.

Each particle contains information regarding the composition of the scalar field. This includes
the density weighted species mass fractions (and temperature if the chemistry model requires it).
Let ¢f denote the value of the at’ scalar (a = 1,2,...,Ny) for the k¥ particle (k = 1,2,...,N)
located at the Lagrangian coordinate X* as described in section 3.3.4. At each time step these
compositional values are subject to change due to the effects of molecular mixing and chemical

reaction. Using Dopazo’s relax to mean model for molecular mixing the composition of each

particle changes according to
. ) 1
(@5)™ = (#5)" = ((65)" — <#6>) exp[— 5 Cowr Al] + <g> (188)

at each timestep. The turbulent mixing frequency w; is backed out from the turbulent viscosity
and length scale using the relation w; = 31,/A%. After the mixing step has been completed the
particles undergo reaction. This is performed by sweeping over all the particles and determining
the fine grain reaction rates &f. For example, for the simple reaction A+ B — P with reaction

rate wq = —ks(pfa)(pfB), the fine grain reaction rates are given by

ok = —kg(pfE)pfE) = ki (PFE)PFE). (189)
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The new particle composition is then determined from:

(e5)™ = (¢F)™= + vk At (190)

3.4.3 Determination of Filtered Quantities

For homogeneous flows averages are determined by simply summing over all the particles:

N N

<A(ep =) A(¢") =) 4" (191)
k=1 k=1

For inhomogeneous flows the situation is complicated by the fact that the PDF varies spatially. A
discrete summation consistent with the Large Eddy PDF is:

A(x, 1) = Tzt AR OCXAD) %) _ UL, AYGH(x)
| T XM =x) T e Gh)

(192)

Averages and higher order moments can be calculated in this manner. In the present work where
a uniform filter of width A = 2Ax = 2Ay has been used, calculation of averages at the grid point
with coordinates (i, j) reduces to summing over all particles in the square region of dimension 2Ax

by 2Ay centered at the grid point.

For Reynolds averaged solutions, similar procedures must be taken to generate meaningful ensem-
bles. However it should be noted that in the case of LES the spatial dependency of the ensemble
is reflected by the filter G(x) in the definition of the large eddy PDF (see Eq. (3.3.5)); for the case
of RANS there is no such spatial dependency in the “conventional PDF”. Rather, the practice of
constructing an ensemble out of particles within some volume of a point is out of necessity since in
general the Lagrangian particles will not coincide with the Fulerian grid points. In this sense LES

is more in tune with the Lagrangian solution procedure.

3.5 Results

To demonstrate the feasibility of LES-PDF, one non-reacting and one reacting simulation were
performed. For comparison, two additional runs were performed in which the Favré averaged
species equations were solved by the finite difference method described in section 3.4.1 rather than
the LES-PDF methodology. For the reacting finite difference simulation the mean reaction rate
was modeled as @, = wW,(@). It is well recognized that such an assumption may be off by orders
of magnitude and gross errors can be incurred. This simulation was performed to compare to the
LES-PDF reacting simulation in which the effects of reaction are accounted for exactly. In order
to provide meaningful results, an additional control simulation was run using the LES-PDF using

Wa = Wo(P) to elucidate any discrepancies with the finite difference procedure.
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All simulations were performed at a Reynolds number of 800 based on initial vorticity thickness
d.0. The physical domain in all cases is 6060 by 306, which was discretized into a 256 by 128
computational domain. The velocity profile at the inlet consists of a 4 to 1 velocity ratio with a
hyperbolic tangent distribution. Forcing of the cross stream velocity at the frequency corresponding
to the most unstable mode for the hyperbolic tangent velocity profile was used to perturb the layer
and induce coherent large scale structures.®® Zero first derivative conditions are assumed at the
freestreams. The chemistry model utilized is an irreversible second order isothermal reaction of the
form A+ B — P. In each of the reacting simulations the Damkéhler number Da = ks /[Ues/bu,]

was set to 2.

In order to save time during the computation, only the region surrounding the reaction zone from
y = —3.75 b, to y = 3.75 6, is initialized with the Monte Carlo particles (one quarter the com-
putational domain). In each cell in this region 30 particles were randomly placed. Thus on average
roughly 120 particles fall within the filter width 2Az by 2Ay to constitute an ensemble, although
this number may vary somewhat as particles convect and diffuse from cell to cell. Additionally
as particles exit the domain, new particles are introduced at z = 0 with a randomly chosen y

coordinate in the vicinity of the reaction zone.

Figure 3.1 is a contour plot displaying the particle density. Note how the Monte Carlo particles
are only distributed in the region surrounding the reaction zone. There is some variation locally,
however overall the particle density is roughly uniform at a value of 120 particles per ensemble.
The oscillatory behavior of the particle zone in the last third of the domain is suggestive of some
organized large scale structure. Indeed such coherent structures are evident in Fig./ 3.2 which
compares contours of species .4 Favré averaged mass fraction for LES-PDF (3.2(a)) to those of
standard finite difference LES (2 — b) for the non-reacting case. The solution provided by the PDF
methodology compares favorably with the standard procedure. Such comparison is important in
that it demonstrates that the particle method is capable of resolving the convective and diffusive

transport mechanisms.

Figure 3.3 displays the contours of species A mass fraction for the reacting case. Although at first
glance the plots appear similar, it is soon apparent that the gradients in Fig. 3.3(b) (finite difference
with T, = W (@)) are steeper suggesting the reactants are separated by a relatively thin reaction
zone. This is indicative that the reaction is more vigorous and has progressed further compared to
the LES-PDF solution depicted in Fig. 3.3(a). This is more clearly seen in the product mass fraction
contours in Fig. 4. Substantial less product formation is predicted by the LES-PDF simulation and
the solution is significantly more diffuse. Clearly this is a result of the LES-PDF solution resolving

the SGS subgrid fluctuations while these terms are neglected in the finite difference solution.

To assist in further appreciation of the effects due to the SGS scalar fluctuations the covariance
(pfa)(pfB) is plotted in Fig. 3.5(a) for the non-reacting case and Fig. 3.5(b) for the reacting
case as determined by the solution to the large eddy PDF. The negative values of this quantity

as predicted by the LES-PDF procedure indicate that neglect of this subgrid term would result in
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unphysically high reaction rates and product conversion. Further evidence is given by reaction rate
contours predicted by LES-PDF in Fig. 3.6(a) and that predicted by the finite difference solution
in Fig. 3.6(b). Clearly the reaction rates in the LES-PDF solution are an order of magnitude
lower than that predicted by the solution neglecting the SGS scalar fluctuations. This indicates
the approximation @, = Wy (@) cannot be justified. While the scalar covariance is very difficult to

model, LES-PDF avoids this obstacle altogether as it has the distinction of being able to resolve

this term.

To be confident that the LES-PDF calculations are representative of the true physics, an additional
simulation was performed with the particle method in which the reaction rate was improperly
“modeled” by @, = w.(¢). Figure 3.7 is a contour plot of the product P mass fraction. Notice
that the product distribution exhibits a remarkable likeness to the finite difference solution to the
species transport equations with the scalar SGS terms neglected. Whether the PDF method or
the finite difference procedure is used the product formation is grossly overpredicted if the subgrid
correlations are neglected. Figure 3.8 displays the reaction rate contours for this simulation. As
expected the predicted reaction rate is an order of magnitude higher due to the neglect of the subgrid
terms. This agreement between the finite difference and the PDF procedures is important since it
elucidates that the neglect of the SGS terms rather that the difference in numerical procedure is

responsible for the discrepancy of the previous runs.

3.6 Conclusion

A PDF method suitable for chemically reactive flows is developed in the context of large eddy
simulation. The clear advantage of PDF methods is their inherent ability to resolve SGS correlations
that otherwise have to be modeled. Because of the lack of robust models to accurately predict these
correlations in turbulent reactive flows, simulations involving turbulent combustion are often met
with a degree of skepticism. The PDF methodology avoids the closure problem associated with

these terms but rather treats the reaction exactly.

The first LES-PDF simulations of a chemically reactive flow have demonstrated the feasibility of
utilizing Monte Carlo methods in the context of LES. Comparison with a finite difference solution
which does not attempt to model the SGS scalar covariance indicates that neglect of this term leads

to unphysically high product conversion rates.

While the present work indicates there is much promise in the LES-PDF methodology, much work
needs to be done. Utilization of compressible dynamic SGS models is a natural starting point.
Furthermore, the development of LES with variable grid and filter spacing as addressed by®® is an
important step towards the ability of such models to predict engineering flows with complex geome-
tries. PDF transport methods require the closure of molecular mixing; in the present research this
has been addressed with a simple deterministic model. Mixing models require a turbulent mixing

frequency. Proper determination of this mixing frequency is desirable. Additionally, inclusion of
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the energy in the compositional domain is a necessary step in order to simulate reactive flows with
temperature dependent kinetics. Furthermore, since the reaction is represented without approxi-
mation realistic chemical kinetics present no difficulty to the particle method and hence should be

investigated. Much of this work is already underway.

Additional extension of the LES-PDF methodology to solve the joint velocity-composition PDF is
also an area to be explored. This area has seen considerable development in the area of RANS by
Pope.!% The velocity-composition PDF has the added advantage that velocity correlations appear
in closed form and eddy viscosity models are not required to model their effects.” In the case
of LES, however, it is expected that the subgrid models are more universal in their applicability
and hence the dependency on SGS closures for the scalar PDF method does not pose too much
concern. Furthermore, particle methods as described in this report can be incorporated into the

large stockpile of existing finite difference and finite volume CFD codes.

4 Work in Progress

We are currently in the process of combining the techniques discussed in the last two sections for
LES of high speed reacting turbulent flows. The primary tool in this part of our activities is the
Monte Carlo LES-PDF solver as discussed in the last section. However, our aim is to replace
the Smagorinsky hydrodynamic subgrid model with an algebraic closure. For this purpose, the
same computer code used for LES-PDF is being modified. presently, we are only considering LES
of incompressible reacting flows. Therefore, only the models developed previously!®! are being
utilized (of course with proper modifications to make them suitable for LES). At this point, there
are some computational problems that need to be resolved. We hope to have some results before

our next report is due.
In the upcoming year (Year 3 of phase II), our efforts will be concentrated on the following tasks:

(1) Completion of the mathematical formulation and computational implementation of LES via

algebraic closures.

(2) Generation of extensive computational results via RANS of high speed flows with and without

chemical reactions and comparisons with experimental data.

(3) Fine tuning of the LES-PDF code. Application of this code for simulations of several reacting

flow configurations. Comparisons with experimental data.

(4) Extension of LES with cousideration of the joint PDFs of subgrid velocity and scalars. Our

efforts will be concentrated primarily on the mathematical formulations and related issues.
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Co-Pls. As before, Dr. Givi is responsible for a timely and successful completion of all the tasks.

There are presently two Ph.D. candidates who are being supported full-time by this grant: Mr.
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program since the initiation of Phase II (and departure of Dr. Steven H. Frankel). Mr. Colucci is
replacing a former RA, Mr. Craig Steinberger. The reason for this replacement is that the work of
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of reacting flows the results of which will be utilized for this work. However, he is no loner being

financially supported under this grant.

References

[1] Adumitroaie, V., Taulbee, D. B., and Givi, P., Algebraic Scalar Flux Models for Turbulent
Reacting Flows, Phys. Fluids, (1995), submitted.

(2] Frankel, S. H., Probabilistic and Deterministic Description of Turbulent Flows with Non-
premixed Reactants, Ph.D. Thesis, Department of Mechanical and Aerospace Engineering,
State University of New York at Buffalo, Buffalo, NY, 1993.

(3] Frankel, S. H., Adumitroaie, V., Madnia, C. K., and Givi, P., Large Eddy Simulations of
Turbulent Reacting Flows by Assumed PDF Methods, in Ragab, S. A. and Piomelli, U,
editors, Engineering Applications of Large Eddy Simulations, pp. 81-101, ASME, FED-Vol.
162, New York, NY, 1993.

[4] Launder, B. E. and Spalding, D. B., The Numerical Computation of Turbulent Flows, Com-
put. Methods Appl. Mech. Engng. 3:269-289 (1974).

5] Reynolds, W. C., Computation of Turbulent Flows, Annu. Rev. Fluid Mech., 8:183-208
Y
(1976).

[6) Lumley, J. L., Computational Modeling of Turbulent Flows, Aduv. Appl. Mech., 18:123-176
(1978).

[7] Taulbee, D. B., Engineering Turbulence Models, in George, W. K. and Arndt, R., editors,
Advances in Turbulence, pp. 75-125, Hemisphere Publishing Co., New York, NY, 1989.

[8] Launder, B. E., Current Capabilities for Modelling Turbulence in Industrial Flows, Applied
Scientific Research, 48:247-269 (1991).

[9) Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, Inc., La Caifiada, CA, 1993.

[10] Hofler, T., Reynolds Stress Model (RSM) in FIRE, FIRE Neuwsletter, 5:1 (1993), Fluid
Dynamics Research Newsletter of AVL Inc., Graz, Austria.

44



[11] Libby, P. A. and Williams, F. A., editors, Turbulent Reacting Flows, Academic Press, London,
UK, 1994.

(12] Libby, P. A. and Williams, F. A., editors, Turbulent Reacting Flows, Topics in Applied
Physics, Vol. 44, Springer-Verlag, Heidelberg, 1980.

[13] Jones, W. P., Models for Turbulent Flows with Variable Density and Combustion, In
Kollmann,*! pp. 380-421.

[14] Jones, W. P. and Whitelaw, J. H., Calculation Methods for Reacting Turbulent Flows: A
Review, Combust. Flame, 48:1-26 (1982).

[15] Jones, W. P. and Whitelaw, J. H., Modelling and Measurements in Turbulent Combustion,
in 20th Symp. (Int.) on Combustion, pp. 233-249, The Combustion Institute, Pittsburgh,
PA, 1984.

(16] Borghi, R. and Murthy, S. N. B., editors, Turbulent Reacting Flows, Lecture Notes in Engi-
neering, Vol. 40, Springer- Verlag, New York, NY, 1989.

[17] Jones, W. P., Turbulence Modelling and Numerical Solution Methods for Variable Density
and Combusting Flows, In Libby and Williams,!! chapter 6, pp. 309-374.

[18] Pope, S. B., A More General Effective-Viscosity Hypothesis, J. Fluid Mech., 72:331-340
(1975).

[19] Taulbee, D. B., An Improved Algebraic Reynolds Stress Model and Corresponding Nonlinear
Stress Model, Phys. Fluids A, 4(11):2555-2561 (1992).

[20] Rodi, W., A New Algebraic Relation for Calculating the Reynolds Stresses, ZAMM, 56:T219-
T221 (1976).

[21] Launder, B. E., On the Effects of a Gravitational Field on the Turbulent Transport of Heat
and Momentum, J. Fluid Mech., 67:569-581 (1975).

[22] Rodi, W., Turbulence Models for Environmental Problems, In Kollmann,* pp. 260-349.

(23] Speziale, C. G., Analytical Methods for the Development of Reynolds Stress Closures in
Turbulence, Ann. Rev. Fluid Mech., 23:107-157 (1991).

[24] Gatski, T. B. and Speziale, C. G., On Explicit Algebraic Stress Models for Complex Turbulent
Flows, J. Fluid Mech., 254:59-78 (1993).

[25] Taulbee, D. B., Sonnenmeier, J. R., and Wall, K. W., Stress Relation for Three-Dimensional
Turbulent Flows, Phys. Fluids, 6(3):1399-1401 (1993).

[26] Yakhot, V. and Orszag, S. A., Renormalization Group Analysis of Turbulence. 1. Basic
Theory, J. Sci. Compui., 1(1):3-52 (1986).

[27] Horiuti, K., Higher Order Terms in the Auisotropic Representation of Reynolds Stresses,
Phys. Fluids, 2(10):1708-1711 (1969).

(28] Yoshizawa, A., Statistical Analysis of the Deviation of the Reynolds Stress from its Eddy-
Viscosity Representation, Phys. Fluids, 27:1377-1387 (1984).

45



[29] Yoshizawa, A., Statistical Modelling of Passive-Scalar Diffusion in Turbulent Shear Flows, J.
Fluid Mech., 195:541-555 (1988).

[30] Lele, S. K., Compressibility Effects on Turbulence, Annu. Rev. Fluid Mech., 26:211-254
(1994).

[31] Gutmark, E. J., Schadow, K. C., and Yu, K. H., Mixing Enhancement in Supersonic Free
Shear Flows, Annu. Rev. Fluid Mech., 27:375-417 (1995).

[32] O., Z., Dilatation Dissipation: the Concept and Application in Modelling Compressible
Mixing Layers, Phys. Fluids A, 2(2):178-188 (1990).

[33] Taulbee, D. B. and VanOsdol, J., Modeling Turbulent Compressible Flows: the Mass Fluc-
tuating Velocity and Squared Density, AIAA Paper 91-0524, 1991.

[34] Sarkar, S., Erlebacher, G., Hussain. M. Y., and Kreiss, H. O., The Analysis and Modelling
of Dilatational Terms in Compressible Turbulence, J. Fluid Mech., 227:473-493 (1991).

[35] Durbin, P. A. and Zeman, O., Rapid Distorsion Theory for Homogeneous Compressed Tur-
bulence with Application to Modeling, J. Fluid Mech., 242:349-370 (1992).

[36] Ristorcelli, J. R., A Pseudo-Sound Constitutive Relationship for the Dilatational Covariances
in Compressible Turbulence: An Analytical Theory, ICASE Report 95-22, NASA Langley
Research Center, Hampton, VA, 1995, Also available as NASA CR 195064.

[37] Viegas, J. R. and Rubesin, M. W.; A Comparative Study of Several Compressibity Corrections
to Turbulence Models Applied to High-Speed Shear Layers, AIAA Paper 91-1783, 1991.

[38] Sarkar, S. and Lakshmanan, B., Application of a Reynolds Stress Turbulence Model to the
Compressible Shear Layer, AIAA4 J., 29(5):743-749 (1991).

[39] Speziale, C. G. and Sarkar, S., Second Order Closure Models for Supersonic Turbulent Flows,
ICASE Report 91-9, NASA Langley Research Center, Hampton, VA, 1991, Also available as
NASA CR 187508.

[40] El Baz, A. M. and Launder, B. E.., Second-Moment Modelling of Compressible Mixing Layers,
Engineering Turbulence Modelling and Ezperiments, Vol. 2, pp. 63-72, Elsevier Publishing
Co., North Holland, 1993.

[41] Kollmann, W, editor, Prediction Mecthods for Turbulent Flows, Hemisphere Publishing Co.,
New York, NY, 1980.

(42] Favre, A., Statistical Equations of Turbulent Gases, in Problems of Hydrodynamics and
Continuum Mechanics, pp. 37-44, SIAM, Philadelphia, 1969.

[43] Launder, B. E., Reece, G. J., and Rodi, W., Progress in the Development of a Reynolds-Stress
Turbulence Closure, J. Fluid Mech., 68:537-566 (1975).

[44) Sarkar, S., The Pressure-Dilatation Correlation in Compressible Flows, Phys. Fluids A,
4(12):2674-2682 (1992).

[45] Schumann, U., Realizability of Reynolds Stress Turbulence Models, Phys. Fluids, 20:721-725
(1977).

46



[46] Shih, T.-H. and Shabbir, A., Methods of Ensuring Realizability for Non-Realizable Second
Order Closures, ICOMP 94-14, NASA Lewis Research Center, Cleveland, OH, 1994, Also
available as NASA TM 106681.

[47] Ristorcelli, J. R., A Representation for the Turbulent Mass Flux Contribution to Reynolds-
Stress and Two-Equation Closure for Compressible Turbulence, ICASE Report 93-88, NASA
Langley Research Center, Hampton, VA, 1993, Also available as NASA CR 191569.

[48] Spencer, A. J. M., Theory of Invariants, Continuum Physics, Vol. 1, pp. 240-352, Academic
Press, 1971.

[49] O., Z. and Coleman, G., Compressible Turbulence Subjected to Shear and Rapid Compres-
sion, in Turbulent Shear Flows 8, pp. 445-454, Springer-Verlag, 1991.

[50] Gottlieb, D. and Turkel. E., Dissipative Two-Four Methods for Time Dependent Problems,
Math. Comp., 30(136):703-723 (1976).

[51] Drummond, J. P., Two-Dimensional Numerical Simulation of a Supersonic, Chemically Re-
acting Mixing Layer, NASA TM 4055, 1988.

(62] Papamoschou, D. and Roshko, A., The Compressible Turbulent Shear Layer: An Experimen-
tal Study, J. Fluid Mech., 197:453-477 (1988).

(53] Voke, P. R. and Collins, M. W., Large Eddy Simulation: Retrospect and Prospects, Physic-
oChemical Hydrodynamics, 4(2):119-161 (1983).

[54] Rogallo, R. S. and Moin, P., Numerical Simulation of Turbulent Flow, Ann. Rev. Fluid
Mech., 16:99-137 (1934).

[55] Givi, P., Model Free Simulations of Turbulent Reactive Flows, Prog. Fnergy Combust. Sci.,
15:1-107 (1989).

[56] Lumley, J. L., editor, Whither Turbulence? Turbulence at the Crossroads, Lecture Notes in
Physics, Vol. 357, Springer-Verlag, New York, NY, 1990.

[57] Reynolds, W. C., The Potential and Limitations of Direct and Large Eddy Simulations, In
Lumley,*® pp. 313-343.

[58] Galperin, B. and Orszag, S. A., editors, Large Eddy Simulations of Compler Engineering and
Geophysical Flows, Cambridge University Press, Cambridge, U.K., 1993.

[59] Givi, P., Spectral and Random Vortex Methods in Turbulent Reacting Flows, In Libby and
Williams,'! chapter 8, pp. 475-572.

[60] Smagorinsky, J., General Circulation Experiments With the Primitive Equations. I. The
Basic Experiment, Monthly Weather Review, 91(3):99-164 (1963).

[61] Germano, M., Turbulence: The Filtering Appraoch, J. Fluid Mech., 238:325-336 (1992).

[62] Germano, M., Piomelli, U.. Moin. P.. and Cabot, W. H., A Dynamic Subgrid-Scale Eddy
Viscosity Model, Phys. Fluids A, 3(7):1760-1765 (1991).

[63] Moin, P., Squires, W., H., C. W., and Lee, S., A Dynamic Subgrid-Scale Model for Com-
pressible Turbulence and Scalar Transport, Phys. Fluids A, 3:2746-2757 (1991).

47



[64] Lilly, D. K., A Proposed Modification Of The Germano Subgrid-Scale Closure Method, Phys.
Fluids A, 4(3):633-634 (1992).

[65] Pope, S. B., Computations of Turbulent Combustion: Progress and Challenges, in Proceedings
of 23rd Symp. (Int.) on Combustion, pp. 591-612, The Combustion Institute, Pittsburgh, PA,
1990.

[66) Schumman, U., Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in
Plane Channels and Annuli, J. Comp. Phys., 18:376-404 (1975).

[67] Brodkey, R. S., editor, Turbulence in Mizing Operation, Academic Press, New York, NY,
1975.

[68] Toor, H. L., The Non-Premixed Reaction: A + B — Products, In Brodkey,%” pp. 123-166.

[69] Hill, J. C., Homogeneous Turbulent Mixing with Chemical Reaction, Ann. Rev. Fluid Mech.,
8:135-161 (1976).

[70] Brodkey, R. S., Fundamental of Turbulent Motion, Chem. Eng. Comm., 8:1-23 (1981).

[71] Toor, H. L., Mass Transfer in Dilute Turbulent and Nonturbulent Systems with Rapid
Irreversible Reactions and Equal Diffusivities, AICRE J., 8:70-78 (1962).

[72] Pope, S. B., PDF Methods for Turbulent Reactive Flows, Prog. Energy Combust. Sci.,
11:119-192 (19853).

[73] Dopazo, C., Recent Developments in PDF Methods, In Libby and Williams,!! chapter 7, pp.
375-474.

[74) Lundgren, T. S., Distribution Functions in the Statistical Theory of Turbulence, Phys. Fluids,
10(5):969-975 (1967).

[75] Madnia, C. K., Frankel, S. H., and Givi, P., Reactant Conversion in Homogeneous Turbulence:
Mathematical Modeling, Computational Validations and Practical Applications, Theoret.
Comput. Fluid Dynamics, 4:79-93 (1992).

[76] Frankel, S. H., Madnia, C. K., and Givi, P., Comparative Assessment of Closures for Turbu-
lent Reacting Flows, AIChE J., 39(5):899-903 (1993).

[77) Miller, R. S., Frankel, S. H., Madnia, C. K., and Givi, P, Johnson-Edgeworth Translation for
Probability Modeling of Binary Scalar Mixing in Turbulent Flows, Combust. Sci. and Tech.,
91(1-3):21-52 (1993).

[78] Madnia, C. K. and Givi. P.. Direct Numerical Simulation and Large Edddy Simulation of
Reacting Homogeneous Turbulence, In Galperin and Orszag,® chapter 15, pp. 315-346.

[79] Cook, A. W. and Riley, J. J., A Subgrid Model for Equilibrium Chemistry in Turbulent
Flows, Phys. Fluids, 6(8):2868-2870 (1994).

[80] Janicka, J., Kolbe, W., and Kollmann, W., Closure of the Transport Equation for the
Probability Density Function of Turbulent Scalar Field, J. Nonequil. Thermodyn., 4:47-66
(1979).

48



[81] Pope, S. B., A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow,
Combust. Sci. and Tech., 25:159-174 (1981).

[82] Curl, R. L., Dispersed Phase Mixing: I. Theory and Effects in Simple Reactors, AIChE J.,
9(2):175-181 (1963).

[83] Chorin, A. J., Numerical Solution of the Navier-Stokes Equations, Math. Comp., 22:745-763
(1968).

[84] Ghoniem, A. F., Vortex Simulation of Reacting Shear Flow, in Oran, E. S. and Boris,
J. P., editors, Numerical Approaches to Combustion Modeling, Progress in Astronautics and
Aeronautics, Vol. 135, chapter 10, pp. 305-348, AIAA Publishing Co., Washington, D.C.,
1991.

[85] Ghoniem, A. F. and Givi, P., Lagrangian Simulation of a Reacting Mixing Layer at Low Heat
Release, AIAA J., 26:690-697 (1988).

[86] Battaglia, F. and Givi. P., Direct Lagrangian Simulations of a Mixing Layer by the Transport-
Element Method, J. Nonequil. Thermodyn., 18:173-194 (1993).

[87) Schuss, Z., Theory and Applications of Stochastic Eifferential Equations, John Wiley and
Sons, Inc., New York, 1980.

[88] Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, Inc.,
New York, 1991.

[89] Billingsly, P., Probability and Measure, John Wiley and Sons, Inc., New York, 1979.

[90] Gao, F. and O’Brien, E., A Large-Eddy Simulation Scheme for Turbulent Reacting Flows,
Phys. Fluids A, 5(6):1282-1284 (1993).

[91] Dopazo, C. and O’Brien, E. E., Statistical Treatment of Non-Isothermal Chemical Reactions
in Turbulence, Combust. Sci. and Tech., 13:99-112 (1976).

(92] Kosély, G. and Givi, P., Modeling of Turbulent Molecular Mixing, Combust. Flame, 70:101-
118 (1987).

[93] Pope, S. B., An Improved Turbulent Mixing Model, Combust. Sci. and Tech., 28:131-145
(1982).

[94] Kosély, G., Theoretical Remarks on a Phenomenological Model of Turbulent Mixing, Com-
bust. Sci. and Tech., 49:227-234 (1986).

[95] MacCormack, R. W., The Effect of Viscosity in Hypervelocity Impact Catering, AIAA Paper
69-354, 1969.

[96] Helfand, E., Numerical Integration of Stochastic Differential Equations, Bell System Technical
Journal, 58(10):2289 - 2299 (1979).

[97] Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book
Company, New York, NY, 1965.

[68] Michalke, A., On Spatially Growing Disturbances in an Inviscid Shear Layer, J. Fluid Mech.,
23:521-544 (1965).

49



[99] Ghosal, S. and Moin, P., The Basic Equations for the Large Eddy Simulation of Turbulent
Flows in Complex Geometry, J. Comp. Phys., 118:24-37 (1995).

[100] Pope, S. B., Lagrangian PDF Methods for Turbulent Flows, Ann. Rev. Fluid Mech., 26:23-63
(1994).



Figure Captions

Figure 2.1: The reduction of the averaged residual for the Gottlieb-Turkel scheme.
Figure 2.2: Downstream evolution of the shear-layer width at steady-state.

Figure 2.3: Cross-stream variation of (U — U;)/(U, — U;)? for the mixing layer.
Figure 2.4: Cross-stream variation of (u"2)/(U; — U;)? for the mixing layer.
Figure 2.5: Cross-stream variation of (u'v')/(U; — U;)? for the mixing layer.
Figure 3.1: Particle number density (per ensemble) contours .

Figure 3.2: Contour plots of species A mass fraction (Da=0): (a) Monte-Carlo LES-PDF, (b) finite

difference.

Figure 3.3: Contour plots of species A mass fraction (Da=2): (a) Monte-Carlo LES-PDF, (b) finite

difference.

Figure 3.4: Contour plots of product P mass fraction (Da=2): (a) Monte-Carlo LES-PDF, (b)

finite difference.

Figure 3.5: Contour plots of SGS species covariance : (a) Da=0, (b) Da=2.

Figure 3.6: Reaction rate contours: (a) Monte-Carlo LES-PDF, (b) finite difference.

Figure 3.7: Product P mass fraction contours. Results generated by Monte Carlo LES-PDF
assuming ©(¢) = W (o).

Figure 3.8: Reaction rate contours. Results generated by Monte Carlo LES-PDF

assuming &(¢) = w(¢P).
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Figure 1: Particle number density (per ensemble) contours
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Fiqure 3.2: Contour plots of species A mass fraction
(Da=0) (a) Monte-Carlo LES-PDF, (b) finite difference
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Figqure 3.3:

(b)

Contour plots of species A mass fraction

(Da=2) (a) Monte-Carlo LES-PDF, (b) finite difference



Figure 3.4:

(b)

Contour plots of product P mass fraction

(Da=2) (a) Monte-Carlo LES-PDF, (b) finite difference
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Figure 3.5: Contour plots of SGS species covariance
(a) Da=0, (b) Da=2
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Figure 3.6: Reaction rate contours: (a) Monte-Carlo LES-PDF,
(b) finite difference



Figqure 3.7: Product P mass fraction contours. Results
generated by Monte-Carlo LES-PDF assuming <AB>=<A><B>
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Figure 3.8: Reaction rate contours. Results generated
by Monte-Carlo LES-PDF assuming <AB>=<A><B>
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